Nonlinear Control

» Consider the following problem:
x=f(x,u),xeR" find u=r(x) state feedback
y=h(x),ueR" u=TI(y)] ~ output feedback
so that the closed loop system %= f(x,r(x)) or x= f(x,I'(x)) exhibits
desired stability and performance characteristics.

[
X is bounded & goes to 0 how it goes to setpoint

* Why do we use nonlinear control :
— Tracking, regulate state, state setpoint
— Ensure the desired stability properties
— Ensure the appropriate transients
— Reduce the sensitivity to plant parameters

Nonlinear Control Vs. Linear Control

* Why not always use a linear controller ?
— It just may not work.

Ex: x=x+u> xeR
When u =0, the equilibrium point x =0 is unstable.
Choose u=—kx.
Then x=x-k>3
We see that the system can’t be made asymptotically
stable at x=0.

On the other hand, a nonlinear feedback does exist :
u(x) = —/kx
Then x=x-kx=(1-k)x

g

Asymptotically stable if k>1. 2




Example

» Even if a linear feedback exists, nonlinear one may be
better.

Ex:  y+ky=v
@ v+t c y
Q— y=u —Y for v=0
e | y
LK

Example (continued)

Let us use a nonlinear controller : To design it, consider again ©

X =X
X, = —kx

Ifk=+1 Ifk=-1

Xy




Example (continued)

Switch k from +1to —1appropriately and obtain a variable structure system.

\\k =+1
X Ko -1 if xs<0
k=+1\\ |+l ifxs>0
— sliding line where s=x, + X,
a X +X% =0

Created a new trajectory: the system is insensitive to disturbance in the
sliding regime = Variable structure control

The Tracking Problem

Consider the system:
x=f(xX)+u

Need to accomplish two control objectives:
1) Control Objective - make x — X, (X, is a desired trajectory), assuming x4, X, € L.
2) Hidden Control Objective - keep everything bounded (ie., x, x,u e L ).

Need to make some assumptions first :
1) xis measureable.

2) if xel,, then f(x)eL,.

3) x hasasolution.

4) x(0)eL,.




The Tracking Problem (continued)

Let the tracking error, e, be defined as
e=X, —X
e=X,—X
Now we can substitute for X :
e=x%—f(x)—-u
Letting é = —ke, we get :
u=x, - f(x) tke
MFeedmk
Now, solve the differential equation
e(t) = e(0) exp(—kt)
Finally,insure all signals are bounded
X, % €L, eel, =>xel, = f(X)elL, =uel, =>xel,

Allsignals are bounded!

Adaptive Control

Consider a linearily parameterizable function
R
f(x) =W (x)® (for example f (x) = [x2 X3 sin(x)]~ { '—D

whereW (x) is known, and ® is an unknown constant.

Let
€=X,-W(x)®-u (1) = ourcontrol
where
U=%, -W(x)®+ke (2)
Let © be defined as
0-0-0
Now, combining (1) and (2), we get
6=—ke-W(X)®




Adaptive Control (continued)

Choose the Lyapunov candidate
_ 2 aTo T _ e
\ —%e +%® ®—%z z,wherez—{é}

Q: Whyis this a good candidate?
A Itis lower bounded (not necessarily by zero), radially unbounded in z, and
positive definitein z.

Lemma: if

V=0

2) V <—g(t), where g(t) >0
3)aMelL,

then !Lng g(t)=0

Adaptive Control (continued)

With our candidate Lyapunov function

_ 2 ATe
V=160
Taking the derivative gives

V=e6+0'0
V =¢(—ke-WO) - 0’6
V=—ke?+0 (—WTe—é)
Letting 0= -WTe, we finally get
V = —ke?
ThereforeV e L, = 0,0,0,xe L, = ue L, = allsignalsare bounded!
For this problem
g(t)=ke’and g(t) =2ke¢ e L,
So our closed loop systemis Q: So, does ® — 0?

6= —ke—WOand® =W'e A Not necessarily!
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Robust (Sliding Mode) Control

Recall the system defined by the following:
x=f(x)+u
=X, —X
e=%X,— f(x)-u
We can try to make several assumptions about the system:
1) X4, % €L,
2) if xelL, ,then f(X)eL,.
3) x— x, and all signals are bounded
4) f(x)is linearily parameterizable (ie., f (x) =W (x)®)
= Adaptive control ONLY
5) \ f (x)\ < ﬂ(i)

known
bounding
function

= We use this assumption for Robust (Sliding Mode) control ONLY'!

——
unknown
dynamics
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Robust (Sliding Mode) Control (continued)

Now, let the control be
u=ke+x, +Vy
whereV, is a function that we can choose. Consider the three following functions

Vo = ,o‘E = Sliding mode

¢

VA p’e = Robust, high gain

R2 —
&

%e
- PE Robust, high frequency
ple|+e&

R3

where ¢ > 0. We will consider each V; separately.
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Robust (Sliding Mode) Control (continued)

Let's try the first function
€=—-ke—f(x)-Vq
Now, take a Lyapunov candidate
V= %ez
V =eé=e(-ke— f(x)=Vq,)
V < —ke” +|g|| f (X)| - eV,
inequality

eZ

V < —ke” +|e| p(x) _HP(X) = used assumption 5 here! (|f (x)|< (X))
V <-ke? +|e| p(x) - [e] p(x) = —ke?

e?=2v

V <-2kV =V +2kV <0

V +2kV = —s(t), where s(t) >0
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Robust (Sliding Mode) Control (continued)

Solving the differential equation, we get
t
V (t) =V (0) exp(—2kt) — exp(—2kt)‘[ exp(2kz)s(r)dr
0

V (t) <V (0) exp(—2kt)
%ez(t) < %ez(O) exp(—2kt)
le(t)| <|e(0)|exp(—kt)

So, the system is globally exponentially stable, and all signals are bounded!
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Robust (Sliding Mode) Control (continued)

Now, let's try it with V;, and the same Lyapunov function
é=—ke— f(X)—Vg,
V < —ke? +e|p(X) —eVg,

V < —ke? +[e[p(x)— L p?(x)e?
&
V <—ke? + \e\p(x)(l—é\e\p(x)j
&
= if [e|p(x) > &, thenV < —ke?
=if|ep(x) <&, thenV <—ke’ +&

V <—2kV +¢
V + 2KV =g —s(t)
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Robust (Sliding Mode) Control (continued)

Solving the differential equation yields

V (t) =V (0) exp(—2kt) — exp(—2kt)j exp(2kz)s(r)dz + & exp(—2kt) J" exp(2kz)dr

K (exp(—2kt)-1)

V(1) <V (0) exp(—2kt) +ﬁ[1—exp(—2kt)]

1e*(t) < e (0) exp(~2kt) +26—k[1—exp(—2kt)]

le(t)) < \/eZ(O) exp(~2kt) + i[l— exp(—2kt)]

The system is Globally Uniformly Ultimately Bounded (GUUB),
and all signals are bounded.
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Robust (Sliding Mode) Control (continued)

Using the third function, V.,, we obtain similar results

pzez
ple|+e

V < —ke? +|e| p(x) -

PN Ve

ple|+e

V'S—ke2+g|: Al }
ole|+e

V<—ke?+e
As you can see, the solution to this equation will be the same as for V,,
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Learning Control

Let's take another look at the system from the previous control

X=f(X)+u, e=x,—x, andé=%,— f(X)—u
For each control type, we attempt to make different assumptions. Those
assumptions eventually help us in the proof of stability and boundness of
the system. For instance, we made the assumption that f (x) was linearily
parameterizable (f (x) =W (x)®). For the Robust (Sliding Mode)
control, we made the assumption that f (x) was unknown, but that it could
be bounded by some known function (\ f (x)\ < p(x)). For learning control,

we make the assumption that f (x) is periodic:
f(x(®) = f(x(t+T))

Let d(t) = f(x(t)), that leaves us with
€= X, —d(t)—u, where d means "disturbance"

We also know, via our assumption that
dt)=d(t+T)
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Learning Control (continued)

Now, take the control to be
u=x,+ke- d
6 =—ke—(d-d)
where
d=d-d
Our task is to design d. So, let's try
xfor|x| < B }
sgn(x) 3 for|x| > B
We make the assumption that the magnitude of the disturbance, d (t) is bounded :
|d(t)| < B, where /3 is a constant

&(t) = satﬂ(dA(t—T))—kde, where sat ; (x) ={

So, then we can say
d(t) =sat,(d(t)) = sat,(d(t-T))
a(t) =sat,(d(t-T))-sat, (t](t —T))+kye = use this in the stability proof!
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Learning Control (continued)
We choose the following Lyapunov candidate to investigate stability :
V::}£e2+§%—jka%(d&»—sa%(&&»rdr 'jﬁjfsmbi d d
d t-T \ u
V 2 0= Can you prove this? &ui,f (= f(v(x))&_ f(u(x))&
V::e@ke—8(0)+§%—ka%(da»—sa%(&0»r
-%ikmﬂma—T»—smﬂ@a—T»f
, , 1 - : k,e’
V::—ke-+§E;[Gag4d(0)—sa%(danf-—@(0——d0)f}—- :
V'_ < ke’ Math Note:
So,V <—g(t), for g(t) >0and (x—y)? > (sat(x) B sat(y))z

glt)=ke*> = g(t) =2keg¢ = g(t) e L,
So g(t) » O and that means

VEL%DGELmDXELmza(t),é,)'(,UeLmze—)O 20




The Tracking Problem, Revisited

We want to build a tracking controller for the following system:
x=—f(x)+u
e=X, —X=>X=X,—€
where our controls are
e=X,+f(x)-u
uU=ke+V,, +%
which yields
e=—ke+ f(x)-V,,
For this problem, we assume f (x) e C' (where C' means differentiable)
e=—ke+ f(x,)+f -V, wheref = f(x)— f(x,)
We also assume H fH <|ell 2% e[, where p is non-decreasing, and p(x) >0. We
also assume that f (x) is known. So, we can say
Van = F(X)

e=—ke+f
2

The Tracking Problem, Revisited (continued)

Let our Lyapunov candidate be
V=Ve v =e
V =eé=—ke? +ef
V < —ke? +HeHH FH
V < —ke” +[ef p(e)
Letk =1+k,, then we have
V<~ (k, - p(e) e’
V <-e?if k, = p(e])
V<-2Vifk, > p(H/2V)
V (t) <V (0)exp(-2t) if k, > p(y/2V (t))
V (t) <V (0)exp(=2t) if k, > p(/2V (0))

Sok, = p(4J2V (0)) = p(y/2V (t)) = true because p is non - decreasing
22




The Tracking Problem, Revisited (continued)

Now we can write

ety < Ye* () exp(-20)if k, > p(,/eZ(O))
e(®)] < [e(0) exp(-t) if k, > p(le(0)])
So, we have semi - global exponential tracking! It is semi-global (instead of just

local) because we can, in theory, set k, as high as we want. Also, as long as
assumptions are met, all signals will remain bounded.

What if we assumed f (x) was linearily parameterizable (ie., f (x) =W (x)®)? Then
we get

f(xg) =W(x,)®

e=—ke+W(x,)®+ f —V
LettingV,,, =W (X, )@, would make é = —ke +W (-)(:) + f,and we have

O=WT(Je

O=-WT()e
¢ ”s

The Tracking Problem, Revisited (continued)

If we let our Lyapunov function be

V= %ez + %@T@)
we get
vV =—e? || (k, - p(le]) } ewd _9'0= recallthat ®=0-Oand ® = -6

=0

V <—e?if k, > plle])

V<-e?ifk, Zp(JZV(O)): Be careful! We can't plug in 2V fore®. Why?
V depends
onG!

Finally, we can show
V <—g(t), where g(t) >0
g(t)=-2e¢ = g(t)eL,,s0 !im\e(t)\ =0

We have semi - global asymptotic tracking.
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Continuous Asymptotic Tracking

If we let

% :%xz +}é(:)2 =V =x(—00 =V = —x? + xO - 00
having made X = —x+©and® =@ — 0.
This let's us say

V=-x2if ®=x

Now try the new approach :
V=x*+P
V=-x+x0+P

t
where P = —x@, then P = —j X(2)®(z)dzr + ¢,

t
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Continuous Asymptotic Tracking (continued)

If you knew that (:) =-X, then

t . t d( 16%() i i
Pz—j—@(r)@(r)dr+§a=—j(%dr )dr+§a:%®2(t)—%®2(to)+§a
t t

0 0

__2 _1/82
V =—x ,soga—%(a (to)
This solution is not unique even though we found it two different ways.
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Continuous Asymptotic Tracking (continued)

Consider the system
x = f(x) + g(x)u = ascalar system where f and g are unknown
here, g(x) >0

We want x(t) — x, (t), we can rewrite the system as
m(x)x + f(x) =u, where m(x) = g(x)™"and f(x) =-g(x)™ f(x)
here, m(x) >0

We make the following assumptions :

Al) x,eC?®

om(x) °M(X) | g ()

OX o%x OX
aslongasxel,

om(x, ) ,m eL, and f(x,),

Xy 0" Xy OXq

o (x) 8%f(x)

A2)  m(x),

el
%X ”

o (x4) 0°f (%)

A3) m(xy),

el
%X, "
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Continuous Asymptotic Tracking (continued)

Let our control be
u=(k, +De(t) — (k, +De(t,) + j((ks +1)ae(7) + Bsgn(e(r) )iz

where k., &, and £ are positive constants. We see that u(t,) = 0.
Here the error variable is defined as e = x, — x
(Note : This controller is piece - wise continuous.)

Taking the derivative of u gives
u(t) = (k, +1)e(t) + (k, +ere(t) + ﬂsgn(e(t))
Let's define a new variabler as
r=€+ae
It can be shown thatif r — 0,thene — 0,andif r e L_, thene e L, (Why is this true?).

28




Continuous Asymptotic Tracking (continued)

Now, from our original system, we can write

m(x)é =m(x)x, + f(x)—u (whereé =%, —X)
We also know

I =6€+ag
and we can then proceed as

m(x)& = —M(x)é + M(x)x, + m(x)%, + f (x)—u

m(x)f = m(x)(%, + ) +m(x)x+ f —u

m(x)r = —}é m(x)r —e+ N(x, x,t)—u
where

N (X, X,t) = m(x)(X, +aé)+m(x)(%r+>'()+e+ f(x)
Substituting for u gives

m(x)f = —% m)r —e— (k, +1)r — Asgn(e) + N()
(Note that we can write r =€ + ae)
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Continuous Asymptotic Tracking (continued)

Let's study the stability of our control using the following Lyapunov candidate:
V= %ez +}ém(x)r2 +V,
V =e(—ae+r)+ r(—%m(x)r —e—(k, +1)r)+ r(N()- Bsgn(e))+ }érﬁ(x)r2 +V,
V =-ae’ —r? +r(N() - Bsgn(e) — k,r) +V,,
V=—ae’ —r’ +r(N, ()~ #sgn(e)) + r(N() = Ny () = k,1) +V,,
Let us define a new variable L, as follows:
L(t) =r(Ny - Bsgn(e)) {Ng = NOGXE) [ X=Xy, %=Xy

We assume that N = N — N, can be bounded as follows

6] < (1) Il 2=

where, p(-), is a non-decreasing, positive, scalar function

So, due to the above assumptions N,,N, e L.
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Continuous Asymptotic Tracking (continued)

t
LetV,, =&, — J L(z)dz (¢, is a positive constant) then, V., = —L(t)
)

where we still have to show that V,,,, > 0.
Substituting these definitions into the equaton for V we get

V =—ae? —r? +r(N()—k.r)
Now use the bound for N:
V <—ae” —r*+|rf p(|)2] - k.r*
L | e o

(H H)H [

V<l +

V<- [ (H )] H where 4, = min{e, 1}

31

Continuous Asymptotic Tracking (continued)

. 1 1 0 e
Wecanalsowrite V as:  V =Z[e r] +V.,
2 0 mx)| |r

z
where, 4 |y[" <V <4 x)|y[ and yz{ }

Now, let 4, =imin{l,m} and 2,(x) = max {$m(x),1}
We then have

V <—«|f |fﬂ3> (H ) , where k¥ >0

V<« ifk, > M
44,
Knowing that |y| < f j(:) we can write

va)]

A

V <7 ifk, > [423 = Here, we can replace t with t,.
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Continuous Asymptotic Tracking (continued)

So, we have Semi-Global Asymptotic tracking!
How do you know?

Remember our Lemma involving V < —g(t)?

Recall our Lyapunov candidate

V= %ez +%m(x)r2 +V.,

V = negative terms+L+V_, and V,_, >0

L(t) = r(t)(Nq () - Asgn (e(t)))

View =-L(0)
So, this gave us V = negative terms + L(t) — L(t) = negative terms = Asymptotic stability
Why not follow this procedure all the time?

Difficult to show that V., is lower bounded by zero (i.e. the integral is always > 0).
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Continuous Asymptotic Tracking (continued)

So our result is only valid if V__ >0.

new —
t

Vo =&, — [ (6(2) + ae(2) (N, () - Bsgn (e(r)) ) d=

f

Vi =6, —jé(r)( N, (r) - Bsan(e(r)))dz —j-ae(r)(Nd () —ﬂsgn(e(r)))dr} Expanded
ty f

Remember L = r(Nd —/sgn (e)). We now show that if £ is selected as
1.
B >[Ny )] +=|N, )],
(24
t
then JL(r)dr <¢,.
fo

So g, = ﬂ‘e(to)‘ _e(to)Nd (to) >0
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Continuous Asymptotic Tracking (continued)

Working with just the integral:

j L(z)dr j dZ(T)N (r)dr /3[ de(T)sgn(e(r) dr+jae(r) (N, () - Bsan (e(r))) d=

to

Integrate by parts

j L(o)dr = e(IN, (D), je()dN (0 g

ﬁ\e(r)\; + j ae(r)(Ny (7) - Bsan(e(r)))de
)

e %(Zxx)

Note: = — X =sgn(x)x

TNV

@ b

j L(zr)dz = {e(t)Nd ®) —ﬂ\e(t)\ —e(t))N, (t,) + ﬂe(to)]}al and ¢}, are positive since 5> ‘Nd (t)‘
f

1 dN d()

+j ae(r) [ Ny (7)—— - Asgn (e(z') )} d r} This term is always negative

t
So, we have IL(r)dr <s,
. 35

Feedback Linearization Problem

Consider the system
M (@)§+V,,(9,4)q+G(q) + F(g) = 7, where M (q) is positive definite, symmetric.

X (1M (@ -V, (@a)k=0
e=0,—-4q
We could rewrite the system as
M ()4 +V,(a.d)g+N(a.q) =7 (N(q,4) =G(a)+ F(d)
Mé = Mg, +V,d+N -7
If we know everything about the system (the model), we can write
r=M((, +ke+k,e)+V,q+N
g+ke+k,e=0
What if we try
r=M (6, +k, e+ kpe)+\7mq +N
Mé = —M (k,&+k,e) +(V, =V, )G+ N — N + (M - M)dj
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Feedback Linearization Problem (continued)

Continuing from previous slide:
6=—ke—k,e+ (I -M*M)(ke+k,e)+M™(Md, +V,¢+N)
where M =M —M, V, =V, -V, and N =N -N
g+kg+ke=f(M,M\V, N)=f(eeaq, 0,000 = Notgood. Why?
Let's try something else. Define
r=e+ae
Fr=8+qé
Multiplying through by M gives
Mr = Mé+ M aé
Mr =M (G, +a€)+V, 0+ N -7
MF =V, r+(M (6, +a€)+V, (¢, +ae)+N)-7
Mr=-V, r+vY(q,q,6,,44,9,)0 -7
Design your control, letting = =Y® +kr and (:) =YTr. Now, we can write

MF =-V_r—kr+Y®, where ®=-Y'r, =0-0, and © = -0. .

Feedback Linearization Problem (continued)

Our Lyapunov candidate can be selected to be

v =%rTMr+%@)T®
which gives

v =rTMr'+%rTMr—C:)T®
V=Y Mrs LM+ Y Mr s 1670+ 14670 -6"60
Vo =r"(-V, r—kr +Y(:))—(:)TYTr+%rTMr

V =—rTkr = —g(t) = recall that M ||’ <r"mr

So, all signals are bounded, and r — 0 (due to our stability lemma). Notice that this
way did not feedback linearize the system like the previous one.
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Previous Problem Using a Robust Approach

For the previous system, we want to apply a robust control:
Mf ==V r+W -z
W =M (G +a€)+V, (4, +€)+N(q,q)
We made the assumption that M (q) was p.d. symmetric and x (% M -V, )x=0.

Let our control be

2 2
r r
7 =kr +V;, where we choose from V,, = L y Vg, = P ,
£ Ir|o+e

_pr
=N

So, our system can be written
Mr =—kr -V r+W -V,

Where p > |W|

Choose the Lyapunov candidate to be
V= % r'Mr

Taking the derivative gives

Vo=—rTkr+r" (W -V,)
39

Previous Problem Using a Robust Approach

Continuing from the previous slide:

2 2
. r
V <Al el o -2 1L

- &
Hr“p[l—@]sa
V <A K[+
Since M is p.d. symmetric, we can write
Lom " <v <Y m,[r|*  (m,m, are constants)
Where the assumption m, HXHZ <X'M(g)x<m, HXHZ was used.

Let ¥ :M, which leads to
m2

v < _Zﬂ“min{k}
m2
V (t) <V (0)exp(—yt) + (1—exp(-yt))

Therefore, the system is GUUB.
On a practical note, high gains cause noise to corrupt actual experiments.

V+e=V <V +¢

£
y
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Observers

Consider the linear system

Plant
X=Ax+Bu
y =Cx
Observer
X = AX+Bu+ Ly
§=CX
where§ =y -y

u, = —kx = for the plant + the observer
u, = —kx = for just the plant
Note: For the observer to work in the system above, you will need
exact model knowledge!
The separation principle (linear systems ONLY) says that u, for the
plant works just like u, for the plant and the observer.
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Observers (continued)

What about a nonlinear system? Consider the system
X = f(x)+g(x)u = nonlinear, so we can't use the Separation Principle!
y =h(x) = suppose you can only measure this - you'll want an observer!
X =TI,(%,u,y)
u =TI, (X)
Then, you could try

}Hl() and IT, () are designed

X=f(X)+g(Xu+Ly
¥ =h(X) Difficult to prove stability result
u=-kX
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Observers (continued)

Let's try to develop an observer for the nonlinear system of the form
X=f(x,X)+u

Our control objective then is to force x — x, when only x is measureable.

The nonlinear system above can be represented by two cases:

Case 1) f () is known, but unmeasurable e.g. f (x, X) = x*x*

Case 2) f() is uncertain and unmeasurable, e.g. f (x,x) = ax*x* { a is unknown.

For Case 1, we can estimate x:

X=f(x,X)+u = open loop observer Recall :

X = f(x %) - f(x,X), where X = x— & X =X-X
What about letting
X=p+k,%andp=f(x,X)+Uu+ky,X

closed loop observer
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Observers (continued)

Now we get
X= Ptk X = (X %) +U+KkyX+ky,X } After differentiating X

Rk X g% = F ()= F (%) = T }From =%
Suppose we can show
H fH <G [%]+&|X| = tinear bound
Then
%= —kyX—ky,%+f = so,V = function(x, %) } This makes the problem complicated
Instead, let's try a change of variables. Define the following:
s=X+aXand$=X+aX
Which gives
$ = -k, X —k, %+ f +ax
Make k,, = o + k and k, = ak +1, then

§=—ks+f-X Two first order systems instead
of one second order system

X=—-aX+s = we justrearranged!
44




Observers (continued)

Consider the Lyapunov candidate:

V:%X2+%32:%2Tz (Herez:[i,s]T)
where

V = X(—a%+5) +5(—ks — % + f)

V =—af® —ks? +sf
say H fH <& %]+ &, |ls. then

V <—af? —ks? + ||%|[s|+ & [s|f = Note: Weused % =s—ax
We can use the property

X

‘X‘ ‘ y\ < ? + 5M2 } Where § is some positive constant

which allows us to write

V~ < —(06 —515)H>~<H2 _[k_é,z _ 41] HSHZ N { If « and k are selected large enough,

g negative definite, so x and s —0!

All signals bounded! (Can you show this?) Here we assume that x,x € L 45

Observers (continued)

Suppose we redefine f:
f()=f(%%) = sonow it depends on  instead of x
Iff ec', then we can use the Mean Value Theorem to state

\ﬁmxxmkpmxxmf
X

where f = f(x,%) - f (% X)
We can then write

X

:

H fH < p(X, % %, 5)

[1|<n9)]
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Observers (continued)

For the observer problem:
. — X . _ -
V <—a% —ks® +||s| p,(%,5) o| = remember we found that V = —aX® —ks® + sf

let @ =land k =k, +1. Then,
o - %
V =% =5 +[2) (2] [Is] - k. 5[ 2= s

— 2
A (Dl
kn

<

Define

N =z 7 () and L = N[s]| -k, [s[|
There are two different cases:
Case 1) k, |5 >N|Js] = L<0

) N N2 2
ase) o <N s Jsl< 2L = <M

2

then L < N
n 47
Observers (continued)
So, Non - decreasing
v <-fa + OB A0
V< _(1_“;(')J I
" x(0) =0l

V<l ifk, > 5 (Il}). where 3 is a positive constant.
Recall that V = %HZHZ So, we can write
V <2pV ifk, > 52 (V2V)
V(t) <V (0)exp(—2V) ifk, > p? (\/ZV—(t) )
%Hz(t)u2 < }/ZHz(O)H2 exp(-23t) fork, > p? (JT(O)) > P (M)
|20 < |2(0)]| exp(-t) for k, > p, (|2(0)])

This gives us a semi-global exponential result! Why not global?
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Combining Observers & Controllers

Can we develop a combined observer/controller for the previous system?
X=f(x,X)+u

Well, we assume f (x,X) e L, ifx,xe L, = butwe can't measure x!

The observer/controller is more complex since all signals must be shown

to be bounded.

We can choose from two different error systems
Casel) e=x, —R=>€=%, —X
Case2) e, =X, —X=>8€ =%, —X
Let's use Case 1 since € is measureable. Rename ite, (now e =¢g,).
This gives us

& =% _)’z:)’(d = P—KyX=%; —ky,X—py + P, where p=p, — p
Letting p, = %, — Ky, X+ k& gives

€ =—kqe+p
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Combining Observers & Controllers
(continued)

Recognizing that p = p, — p, we can write

p =X, —k01>?+kclé1—(f(-)+k02>?+u)

5 = |:Xd + kcl(kclél + ﬁ)_ f() - kozi:|_ k01)L(_u
=W, —>measureable
We can design the control as follows
u=W,+k,p+e +V,,
F;) = _kcz p-e - k01);( _Vaux
Taking the following Lyapunov functions

A =%e12+%pz

V.c = _kc:Le:L2 + 915 - kcz f’z —€ ﬁ + f)(_kO:L);( _Vaux)

A :%X2+%sz

V. =—a&% —ks® +sf

o]

where the combined Lyapunov function can be written
V =V, +V,

} Vaux is designed during the stability proof
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Combining Observers & Controllers
(continued)

Now, we can write the derivative of the combined Lyapunov function as
L

— —
V =—ax® —ks® —Kk,&° — k., p’ +sf — pk,,X —pV.

aux

-
good terms (Why?) bad terms (Why?) injected term
Pk X = pky, (—aX+s) = —ak,, pX +pk,,S
measureable unmeasureable

o 2 = -
=V, + @Ky X+ K ko, P lets us write } v,

Letting V. A

aux ux1 Will be designed later
L = Sf - r)I(OSL (—0.’5(' + S) - pvauxl - f’(akmi + knlkgl ﬁ)

Also, we can say
L< () + k01 ‘ f)HS‘ - kn1k021 ‘ mz

‘5‘2 Nonlinear damping on one term

nl

So, we can write
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Combining Observers & Controllers

(continued)
Recall that
f=f(x%-"f(&%
Let's assume that f e ¢!, then
X

HfHSp(x, %, %,%) |z

, where ||z = S

It can be shown that

p(x,X,ﬁ,f() < pl(ﬁ,i(, X, %) < p, (X, %, %,8) < py (X ,el,f(, %,8) < p, (%4, %4, €,,8,%,9)...
"'SPS(Xd‘Xd‘el‘D'X’S)Spﬁ(el’ X’s
Then we can write

ot
~

o] BIE(HIE 0

’ auxl —

V <-ag? —[k _kljsz kel —k, 7+ 26 (.

nl

D|z| = weletV,
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Combining Observers & Controllers
(continued)

From the previous slide:

; (= 1 ~ Il
Vs-a(R- Lo ket el adeblel

nl

z
€

p

where ||z] =

If we let o,k ;, k., =1and IZ—ki =k +1, we can write
nl
V <[zl + sl os Dzl ke o]
Ng
Ifke s[> ooz |21, then N, =[s(os(zplZ] -k [s]) <O

s (a4

z
itk 5] < ooz [z], then N, < ki“
F

2 (5] —112
which gives, V <-|z|f +Pe(H;M

F
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Combining Observers & Controllers
(continued)

From previous slide:

e 2Dz
ke

2 7||=1
So, V< —[l_ '06(2)]22
kF

V <=plz] it ke > p (2]
Remembering that V = %HTHZ we can say

V <-2pV itk 2 pd (VV)

V (t) <V (0)exp(-2/t) ifk. > p (M )

Now, we can write
V0zol < LIz exp(-21) itk > p (
[z < [z@)]exp(-t) if k. > o’ ([2()])

V <—|zf +

z))

54




Combining Observers & Controllers

(continued)
Remember that
)z X X—)?
s X+ % X— %+ (X— %)
£= e B Xq - X - Xy -X

Pl % KRkl —(R—kou®) | | % — koK o+ kg (% = %) = (R = kg (X %))
Finally, we have semi-global exponential stability, and we can say

X— % &> X, X—> % X%, = Occurs exponentially fast!

SO X—>Xg, X X4
Recall that you can't measure p; (-), which came from making f (x, X) € ¢'. Using the
Mean Value Theorem and the fact that something is ¢* tells us that

[hC) = he® < A (K] [<])I%]
For example,
[ = 2] = %+ 0%] < (J5]+ [
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Filter Based Control

Assume we have the same system:
X=f(x,X)+u
where only x is measureable, and the structure of f (x, X) is uncertain.
We will assume that
(X, X) > H f(x, X)H } () is a positive scalar function
Why couldn't we use this function in the control (if we know p)?
It depends on x (which we don't know)!

Example:
H)'(2 COS(X)aH < 5“)’(2 H In the analysis we use the fact that p(-) exists
Tiewm 6w

The inequality is true, but o(-) depends on x
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Filtering Control (continued)

Let's define the following:
€=X, - f(x,X)—u = Why the 2nd derivative? We need it for the control.
We will need e and é, but é is not measureable. So, we come up with another variable:
n=é+e+e, = afilterto help us with the é problem
We now have three error systems:
errorsysteml) 7n=E8+€+¢€, =X —f(X,X)+€é+¢é —u
error system2) €&, =—-e, —kn+e = This is designed
errorsystem3) é=-e, +7—¢ } From the definition of 7(t)
Our next step is to develop a Lyapunov candidate.
v :}ée2 Jr}éef2 + 2772
Since 77 is not measureable (due to the fact that é is not measureable), we cannot use
it in the control. Later we show that e, is measurable.
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Filtering Control (continued)

Taking the derivative of our Lyapunov candidate gives
V=e(-e+n—e;)+e, (-, —knp+e)+n(%, — f(x,%x)—u)
+n(-e+n—e;)+n(-e —kn+e)
V=-e—e’ = (k-1n° +n(% - F(x¥X) -u)+n(-(k+2e, +e)
Is e, measureable?
¢ =—e —kp+e=—e —k(e+e+e )re=—(k+l)e, —(k-1)e—ke
Let's develop a new variable p, where
p = function,
e, = p+ function,
We will need to find function, and function,. Differentiate e, to get
¢, = p+ function, = function, + function,
So, that means that
function, = —(k +1)e, — (k—-1)e

function, = —ke
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Filtering Control (continued)

Now, we know
p=—-(k+1le, —(k-Deande, = p—ke
So, e, is measureable, which leaves f (x, X) and 7 as the unmeasureable variables.
We design the control:
u==X, —(k+2)e, +e, letk=2+k,
Now,
V=—e—e’-n"+n(f(xx)-kn)
Also, we define

f= f(xj,xd)— f(x,X) } Note | f, || < ¢4

d

~ [
Iff ect, then | T| < p (X, %,,€,86) By the Mean Value Theorem, since f ot
1 (Xg 0 Xy ¢

. e
Ten et
¢

< 2 (el Iel)
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Filtering Control (continued)

From the previousslide :

< el

Let's come up with a new variable z, where

e
e

e
HZH: e (because € =—e; +7—€)
n
So, we know

HEvAE
The derivative of our Lyapunov function then becomes

V=22l Tty —k)< =272+ oy (2 + ol - oo
Letting k, =k, +k,, and | f||< £, allows us to write

V <22+ (alodel -kl ) ol ~abl)
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Filtering Control (continued)

Asseen on the previousslide,

V <22+ (alodfal Kol J+ g .ol )
Now, we can say

v S_ZTZ+M32(HZH)+£
kﬂl |(nZ

2 2
V S—[l— P3 QZ)}ZZ+§d
k K,

nl 2

nl n2

v s_[1_"3zqz)}z2 + 5, where s =55
k k
So, we can write
V <—flle| +e&,if kyy > p,7(12])
V<2V +eif k> p (Vv (D)
V42 —g=5(t)=s(t) <0
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Filtering Control (continued)

Continuing from the previousslide :
V+28V —g=s(t)=s(t) <0
Solving the differential equation gives

V(t) =exp(=2 )V (0) + eexp(-2 ﬂc)j exp(—247)dz +exp(-2 ﬂc)j s(r)exp(2p7)dr

-

1
ﬁ(eXP(mel)

V () < exp(-2 8V (0) + % (L-exp(-2/3))
So,V (t) is bounded such that
V(t) <V (0) +§ = KO powd

40

Ja
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Filtering Control (continued)

Continuing from the previous slide:
V (t) < exp(=28t)V (0) + %(1— exp(-2/31))
We can then write

V (t) < exp(=2 8tV (0) + i(l— exp(=2/3t) ifk, > p( /2(v ) + 2‘;]

which means

J2t)] < \/2(0)2 exp(—2[;’t)+%(l—exp(—2ﬂt)) ifk, > p;[ |2 +;]

So, we have semi-global ultimate uniform boundness. We can easily show that all
signals are bounded.
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Adaptive Approach

Reconsider the previous system:

X=f(x,xX)+u

E=—F(X,X)-u+X,

n=eé+e+e

e =—e, —knp+e

e€=—-e, +n-e

n=€+eé+é =—(k-Dn+%X, — F(X,X)—u—2e,
Let

u=%X, —2e, +e+u, —ke,
where uy, is a feed forward term, which was not included in our previous control.
This gives

n=—(k-Dn—-e, - F(X,X)—uy, +ke,
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Adaptive Approach (continued)

Consider the Lyapunov candidate

v =%H2H2 (where z=[e e, n]")
which gives

V=—e—e’=(k-n’ +n(-f(x%)-uy)
Assume f (x,X) =W (x,X)® = Assume LP
We now write

=0

L:n(—f(x,)’()—uﬁ):n[—f(x,)’()+f(xd,>'<d)— f (X, %) —Uyg

L:nf+n[—W(xd,Xd)®—uﬁ] = Recall that f = f(x,%)— f(x,,%,)
M )T

F(%g.%)

If we can show that H f

<p(z) |z
L=nf+nW(x,,%)0 where®=0-6

,and we letu, =W (x,, X, )(:), then
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Adaptive Approach (continued)

Now, consider the Lyapunov candidate:
e

v :%ZTZ+%@T@), HEE 6=0
n

|
@»

where
V=€ e (k-Dn’—nf—nW(x,, % )0 60
Our system can now be written
% =W (X, X)® —u, where we assume that W (x,X) ® e ¢!
u=%X, —2e, +e—ke, +W(xd,>'<d)(:)
We know that H fH < p(Xg,%,2) ||2|| is true since
f=W(x,X)0-W(x,,%)® and W(x,x) ® e c"
Let's create a variable, p, where
p=—(k+1le; —(k-Deande, = p-ke
Leté, =—e, —kn+e
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Adaptive Approach (continued)

If we letk =k, + 2, then
V2ol |p0)] [kl + 61, %,)-6)

Where we let © = —-nW(xy,%;) = 7 is NOT measureable! } We address this below
We can know say

Ol
k

n

ve{1-20) ot

n

V<7 +

We need to use integration by parts:
t measurable unmeasurable

(:):—'[W(xd,>'<d)(e+ef + €& )do, where o is just a dummy variable
0

t t
L = —j.W(Xd , Xd)[%jda =W (Xy, %, )el —JW (X4, %)edo } Unmeasurable part
0 0
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Adaptive Approach (continued)

As seen on the previous slide:

t
L =W (x;, %, Jely =[W (%, %, )edo
0

Finally,
dw (%,xd (a)j
L, =W (X, %, )e—W (X, (0), %, (0))e(0)—jdg—ae(a)da

0
The apadtive update law can now be completed and then we can say

V<=plef itk = o (l2)])
Our result is semi-global asymptotic. Why is it not exponential? V has more
terms in it than just z.
We can also write

V<=l fork, > p* (V2 (D))
V2V -0"0 =||
V <-pe fork, > p? (JZV(O)) 68




Adaptive Approach (continued)

As seen on the previous slide:

V <=l fork, > p*(J2v(0))
It can be shownthatz,® e L, = e,¢é,¢e, &, ,77,77,(:) el,. Whydowecareifzel, ?
We want z(t) € L,, which would mean !im z(t) =0. Remember, z has e, e,

and n init. So, they go to zero also. This has been an example of output feedback
adaptive control. It gave us semi-global asymptotic tracking.

Why didn't we use an observer (we used a filter)? We don't have exact model
knowledge (there is uncertainty in the model)!
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Variable Structure Observer

Consider the system:
X =h(x,X)+G(x,X)u, where we observe x with only measurements of x.
We also make the assumption that x, X, X,u,u, h(x, X),G(x, %) € L, where
h(x,X) , G(x,X) eC" and are uncertain. Why do we make the assumption about

boundness? We want to build a X, so we want to ensure that X — X.

For our problem, we define

>
Il

X—X
X_

>t
Il
<

Let %= p+Kk,X, where p =k, sgn(X) +k, X } Observer
Then, X =k, sgn(x) + k% +k X

% = h(x, %) +G(x, X)u — k, sgn(X) —k,X - ko);( } Observation error system
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Variable Structure Observer (continued)

Let's create a new variable, r, where
r=%+%
r = h(x, %)+ G(x, X)u —k; sgn(x) —k, X —(k, — 1)%
Letk, =k, — 1. ((k, ); >1V i = j) Now, we can write
f =N, (x,x,t) -k sgn(X) — k,r
So, we have
N, (-) =h(x, %) +G(x,X)u
We can let our Lyapunov function be

t
V, ()= %rTr +P,(t), where P, (t) =&, —'[Lo (r)dz = we must prove that P, (t)>0
tO

L (t) =r" (N, —k sgn(x))
S0, We can now write
Vo = rT (No - kzr - kl Sgn(i))_rT (No - kls‘-:’n()z))
N S e/

Po=-Lo(t)
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Variable Structure Observer (continued)

From the previous slide:
V, =17 (N, —k,r —k;sgn(%))—r" (N, —k, sgn(X))
Next, we get
V. =—rTk,r
Using the Rayleigh-Ritz Theorem lets us write
V, <Ak Hr [
So, V, >0 and V, < —g(t), where g(t) > 0. Ifg(t) e L, then !me g(t)=0.

Here, g(t) = A, {k,}r'r and g(t) = 4, {k,J2r'r
Therefore,rel, = fel_, thenr - 0= %, X — 0!
But, we must show that P, (t) > 0, which requires

Ky >|Ng]| +|N,; |, where i denotes the ith component for vectors
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Variable Structure Observer (continued)

So, our task then is to prove that

1 G Nt
G I L, (z)dz j‘yf“ ; jd<y<r>>
LetM = j L, (r)dr. 5o we get SR -Iyt)- Xanda{? -
M—;[{(T}T(No—ksgn )dr+j[x T (N, ~k son (%(+))) <
v J{d” Nodf—ﬂdﬁ(f)} fuson (X df+J[x T (No=son((7)))de
=[50 w o), flace)] e )dr—;kﬂ W),
X (N kson ()

Variable Structure Observer (continued)

Continuing from the previous slide:

M :j[f((r)T[ o(7) d(N,(r)) klsgn()”((z'))]dr+x(t) N, (t)=%(t,)" N, (t)
_zk % (t)\+izzlk“\x, (t)

Y sj[zk Xi(r)[[ N, ()| ) ]—kﬂDdrﬂi(t)T N, (t)
~X(t,)" N°(t°)_.zn1:k1' %, (t)‘JriZ;:kli %, (t)\

The term ()’ N, (t) can be written Zn: % (t)
i=1

M= iz;:(kli % (1) =% (t) Ny (to))

So, if we define £, =M, then P, > 0. Notice that u is not in this observer; so, we

N,; (t)], which gives

can't exploit it for a controller! 74




Filtering Control, Revisited

Let's consider the following system:

M (X)X + f(x,X) =u, x is measureable

M (x), f(x,%) e c?

M(X),M(x)eL, ifx,xel, Assumptions

f,x), f(x,x)el, ifx,x%xel,
Let e = x, —x and M (x) be such that

M(x) <M(x) < M(x) = upper and lower bounded
Letu=k,sgn(e+e;)—(k, +Dr, +e
Let our error system be defined by three equations:

error system 1) é=—-e—r, +7

error system 2) f, =—r, —(k, +)nn+e—e, Crafted to make the analysis work

error system 3) €, =—e; +1,

Where did 7 come from? We invented it.
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Filtering Control, Revisited (continued)
We define
p=-r —(k+D(e+r)+e—e ) 1, =p-(k +e
n=e6+e+r,
Design 7 such that 77 = X, — X —2r, —e, =k,
Then, by multiplying through by M (x) gives
M(x)77 =M (X)(%; —2r; —&;) = k,M (x)n+ F(x,X) —u
M (x)77 = —K,M (X)77 + N(X, X, t) = M (x)(2r, +e,)—u
where N (-) = M ()%, + f (X, X)

Then, if we add and subtract an Ny (N, = N(x,%,t)|,_, is bounded apriori)
X=Xy

We get,

M ()77 = —k,M ()7 + N + N, —u—%M(x)n
Remember that N = N — N,. We can now put in our control:

M (x)17 = —k,M (X)77 + N+ N, —k, sgn(e+e; )+ (k, +Dr, —e—%M (X)n
where N =N — N, — M (x)(2r, +ef)+%l\/'l(x)77
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Filtering Control, Revisited (continued)

As seen on the previous slide:
N =N-N, -M(x)@r, +ef)+%M(X)77

We can show
e
. e
N||<o(lZ)l. z= r:
n

Our next step is to use the Lyapunov function.

v =%M(X)772 +}éef2 +}érf2 +}ée2
Where taking the derivative yields
Vv :%l\/'l(x)n2 +nM(X)7) +€,€, +1, 1, +eé

7

Filtering Control, Revisited (continued)

Continuing from the previousslide :
v =}él\/'l(x)772 +M (X)77+e,6, +1, 1, +eé
V=—e’—er +en—e’+er, -1 —r (K, +)n+re—re, +%I\/'I ).
—}é M ()77 +17(K, +1)r, —ne+ 7N =7k, M (X)17 + 7N, — 7k, sgn(e+e, )
V <—e?—e”—r.” +|n 2]z -k, M| + 7N, — 7k, san(e +e, )
where M, < M (x) < M 2(X).

Letk, = Mi(kn +1). Then, we can write
1

V <2l + nllezlz] - lol) + N~k sance-+e,)

RN )
V< +k7+77Nd -7k, sgn(e+e;)

2
Y s—[l—'oQ)J 2| + 7N, — 1k sgn(e +e, )

n

g
K,
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Filtering Control, Revisited (continued)

From the previousslide:

2
V< —[1—pqu)]z2 +7N, — 7k, sgn(e+e,)

Keep in mind that
minml,l}ﬂsz <V < max{Mz(x),l}HzH2
RewritingV gives

V< _[1_pquz)]22 +L(1)

n

where L(t) = 7N, — 7k sgn(e +e;)

t
LetV,, =V +¢, —J L(z)dz, where ¢, isa constant.
0

P(t)

We haveV,,, =V - L(t); so,

1L

Filtering Control, Revisited (continued)

We have

0

t
P(t):g“b—'[[(ewtewef +€é;:)| Ny —k;sgn(e+e,) ||dr
n a(t)
t
P(t)=¢, —J((d)+(())(Nd —k sgn(e)))dz = We've done this before. Work is done!

0

We know from previous results that P > 0if k, >[N (-)+ ‘ N, (1

Let¢, = (kyfe(to) —e(t)N, (&)
Now, we have to complete the proof :

M0 M Y <V < max{ a2 B[P, where y =7 VP
2 27

A A2
We can then say

vnew < _ﬁHZHZ for k" > pZQ‘ZH)
vnew < _ﬂHZHZ for kn > PZQ\YH) 80




Filtering Control, Revisited (continued)

Continuing from the previousslide :

Vi <~ fork, > pz[ VT(t) ]

vnew < _ﬂHZHZ for kn > pz( Vne;v’l(o)]

Vo =1 0k [y

SoV >0andV <—g(t), where g(t) > 0.
Here g(t) = 242" z, and we know if g(t) e L, then !im g(t)=0.

Therefore z,e,é,e,,r,,7 —>0.
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