Chapter 1: Introduction

1 Linear Time-Invariant Systems

Example 1 : Mass—spring system
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fs = By friction force; fi = ky (restoring) spring force. Thus,
my + 0y + ky = mg.

Defining states x1 =y, x9 = 1y, we obtain
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If our interest is in the displacement vy, then

y=z1 = [10] [“”]
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thus,



2 Nonlinear Systems

We are interested in nonlinear systems that can be modeled by a
finite number of first-order ordinary differential equations:
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Defining vectors
T up f1($7 t, u)
x=| ,u=| ¢ |, flt,x,u)= :
T Uy folz,t,u)
we will write equation (1) as follows:
&= f(z,t,u). (2)

Similarly, the system output is obtained via the so-called read out
equation
y = h(z,t,u). (3)

Special Cases:

o Unforced Systems (u is identically zero).

dZZf(:L“,t,O) - f(:l?,t). (4)

e Autonomous systems (f(z,t) is not a function of time).

z = f(z) (5)



Example 2 : Consider a “hardening spring” where the force strength-
ens as Yy Increases:

fi = ky(1 + a*y?).
in this case we obtain:
mij + By + ky + ka’y® = f(t).
resulting in the following state space realization
T1 = To
{ Ty = —%xl — %a%? — %fz + %

which is of the form & = f(x,u). In particular, if u =0, then
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ori = f(x). O



Magnetic Suspension System

The equation of the motion of the ball is
my=—fi+mg+F (6)

e m is the mass of the ball,
e f;. is the friction force,
e g the acceleration due to gravity, and

e [ is the electromagnetic force due to the current .

We now look for a model for the magnetic force F'. The energy
stored in the electromagnet is given by

1
E = §Lz'2 L : Inductance of the electromagnet  (7)

L=L)~ ﬁﬂy. )

Thus, E = E(i,y) = 5L(y)i*, and the force F = F(i,y) is given
by
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Assuming that the friction force f; = ky

. 1 Aui?
= —ky+mg — . 10
T T 0 (10)
Also .

v=Ri+ — o (Li) (11)
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Figure 2: Magnetic suspension system.
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Substituting (12) into (11), we obtain

: At dy A di
pu— R _—e— — .
v ' (1+ py)? dt+1+uydt

(13)

and defining 1 = y, zo = v, x3 = ©:

T = T2
_ k . A3
T = _ — —
2 = 97" 2m(1 + px)?
, 1+ pxy AL
= —R
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Inverted Pendulum on a Cart

L
r = X+§sin<9 = X +1[sind (14)

[
Yy = 50089 = lcosf (15)

F, and F), represent the reaction forces at the pivot point. Con-
sider first the pendulum. Summing forces we obtain the following
equations:

F, = mX +mifcos — milf” sin 0 (16)
F,—mg = —mlfsinf — milf’ cos 0 (17)
F,lsinf — Fylcosf = J6. (18)
Considering the horizontal forces acting on the cart, we have that
MX = f, — F,. (19)

defining state x1 = 0, x9 = 0 we obtain

Zi?l = X9
gsinx; — amlz3sin(2z1) — 2a cos(xy) £,
41/3 — 2aml cos?(x1)

where we have substituted

Ty =
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Figure 3: Pendulum-on-a-cart experiment.

Figure 4: Free-body diagrams of the pendulum-on-a-cart system.



The Ball-and-Beam System
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Figure 5: Ball-and-beam experiment.
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where J: moment of inertia of the beam, and R, m and J, are
the radius, mass and moment of inertia of the ball, respectively.

Defining state variables z; = r,xo = r,x3 = 0, and 4, = 0, we

obtain:
1
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mx? + J + J,




