
Feedback Linearization

1 Mathematical Tools

1.1 Lie Derivative

Definition 1 : Consider a scalar function h : D ⊂ Rn → R and a vector field
f : D ⊂ Rn → Rn. The Lie derivative of h with respect to f , denoted Lfh,
is given by

Lfh(x) =
∂h

∂x
f(x). (1)

Example 1 : Going back to Lyapunov functions, V̇ is the Lie derivative of V
with respect to f(x).

Given two vector fields f, g : D ⊂ Rn → Rn we have that

Lfh(x) =
∂h

∂x
f(x), Lgh(x) =

∂h

∂x
g(x)

and

LgLfh(x) = Lg[Lfh(x)] =
∂(Lfh)

∂x
g(x)

and in the special case f = g,

LfLfh(x) = L2
fh(x) =

∂(Lfh)

∂x
f(x).
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Example 2 Let

h(x) =
1

2
(x2

1 + x2
2)

f(x) =

[
−x2

−x1 − µ(1 − x2
1)x2

]
, g(x) =

[
−x1 − x1x

2
2

−x2 + x2
1x2

]
.

Then, we have

• Lfh(x):

Lfh(x) =
∂h

∂x
f(x)

= [x1 x2]

[
−x2

−x1 − µ(1 − x2
1)x2

]

= −µ(1 − x2
1)x

2
2.

• Lgh(x):

Lgh(x) =
∂h

∂x
g(x)

= [x1 x2]

[
−x1 − x1x

2
2

−x2 + x2
1x2

]

= −(x2
1 + x2

2).

• LfLgh(x):

LfLgh(x) =
∂(Lgh)

∂x
f(x)

= −2 [x1 x2]

[
−x2

−x1 − µ(1 − x2
1)x2

]

= 2µ(1 − x2
1)x

2
2.
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1.2 Lie Bracket

Definition 2 : Consider the vector fields f, g : D ⊂ Rn → Rn. The Lie bracket
of f and g, denoted by [f, g], is the vector field defined by

[f, g](x) =
∂g

∂x
f(x) −

∂f

∂x
g(x). (2)

Example 3 : Let

f(x) =

[
−x2

−x1 − µ(1 − x2
1)x2

]
, g(x) =

[
x1

x2

]

[f, g](x) =
∂g

∂x
f(x) −

∂f

∂x
g(x)

=

[
1 0
0 1

] [
−x2

−x1 − µ(1 − x2
1)x2

]

−

[
0 −1

−1 + 2µx1x2 −µ(1 − x2
1)

] [
x1

x2

]

=

[
0
−2µx2

1x2

]
.

Notation: (useful when computing repeated bracketing)

[f, g](x) , adfg(x)

and

ad0
fg = g

adi
fg = [f, adi−1

f g].

Thus,

ad2
fg = [f, adfg] = [f, [f, g]]

ad3
fg = [f, ad2

fg] = [f, [f, [f, g]]].
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1.3 Diffeomorphism

Definition 3 : (Diffeomorphism) A function f : D ⊂ Rn → Rn is said to be a
diffeomorphism on D

(i) it is continuously differentiable on D, and

(ii) its inverse f−1 exists and is continuously differentiable.

The function f is said to be a global diffeomorphism if in addition

(i) D = Rn, and

(ii) lim
x→∞

‖f(x)‖ = ∞.

Lemma 1 : Let f(x) : D ∈ Rn → Rn be continuously differentiable on D. If
the Jacobian matrix Df = ∇f is nonsingular at a point x0 ∈ D, then f(x)
is a diffeomorphism in a subset ω ⊂ D.

1.4 Coordinate Transformations

Given
ẋ = f(x) + g(x)u

assuming that T (x) is a diffeomorphism and defining z = T (x), we have that

ż =
∂T

∂x
ẋ =

∂T

∂x
[f(x) + g(x)u] .

Since T is a diffeomorphism, we have that ∃T−1 and knowing z

x = T−1(z).

1.5 Distributions

Let f : D ⊂ Rn → Rn. This vector field assigns the n-dimensional vector
f(x) to each point x ∈ D. Now consider “p” vector fields f1, f2, · · · , fp on
D ⊂ Rn. At each x ∈ D

∆(x) = span{f1(x), · · · , fp(x)}

is a subspace of Rn.

Definition 4 : (Distribution) Given an open set D ⊂ Rn and smooth functions
f1, f2, · · · , fp : D → Rn, we will refer to as a smooth distribution the process
of assigning the subspace

∆ = {span{f1, f2, · · · , fp}}

spanned by the values of x ∈ D.
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Notation:

• ∆(x): the “values” of ∆ at the point x.

• {dim (∆(x)) = {rank ([f1(x), f2(x), · · · , fp(x)]).

The dimension of the distribution ∆(x) at a point x ∈ D is the dimension
of the subspace ∆(x).

Definition 5 : ∆ is said to be nonsingular if there exists an integer d such that

dim(∆(x)) = d ∀x ∈ D.

otherwise ∆ is said to be of variable dimension.

Definition 6 : A point x0 of D is said to be a regular point of the distribution
∆ if there exist a neighborhood D0 of x0 such that ∆ is nonsingular on D0.
A point that is not regular is said to be a singularity point.

Example 4 : Let D = {x ∈ R2 : x1 + x2 6 =0} and consider the distribution
∆ = span{f1, f2}, where

f1 =

[
1
0

]
, f2 =

[
1

x1 + x2

]
.

We have

dim(∆(x)) = rank

([
1 1
0 x1 + x2

])
.

Then ∆ has dimension 2 everywhere in R2, except along the line x1 +x2 =
0. It follows that ∆ is nonsingular on D and that every point of D is a regular
point.

Example 5 : Consider the same distribution used in the previous example, but
this time with D = R2. From our analysis in the previous example, we have
that ∆ is not regular since dim(∆(x)) is not constant over D. Every point
on the line x1 + x2 = 0 is a singular point.

Definition 7 : (Involutive Distribution) A distribution ∆ is said to be involutive
if g1 ∈ ∆ and g2 ∈ ∆ ⇒ [g1, g2] ∈ ∆.

It then follows that ∆ = span{f1, f2, · · · , fp} is involutive if and only if

rank ([f1(x), · · · , fp(x)]) ≡ rank ([f1(x), · · · , fp(x), [fi, fj]]) , ∀x andall i, j
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Example 6 : Let D = R3 and ∆ = span{f1, f2} where

f1 =




1
0
x2

1



 f2 =




0
x1

1



 .

Then it can be verified that dim(∆(x)) = 2 ∀x ∈ D. We also have that

[f1, f2] =
∂f2

∂x
f1 −

∂f1

∂x
f2




0
1
0



 .

Therefore ∆ is involutive if and only if

rank








1 0
0 x1

x2
1 1







 = rank








1 0 0
0 x1 1
x2

1 1 0







 .

This, however is not the case, since

rank








1 0
0 x1

x2
1 1







 = 2 and rank








1 0 0
0 x1 1
x2

1 1 0







 = 3

and hence ∆ is not involutive.
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2 Input–State Linearization

Consider a dynamical systems of the form

ẋ = f(x) + g(x)u, u ∈ R

Want transform this system into one that is linear time-invariant by using a
state feedback control law plus a coordinate transformation.

2.1 Case 1: Systems of the Form ẋ = Ax + Bω(x)[u − φ(x)]

First consider a nonlinear system of the form

ẋ = Ax + Bω(x)[u − φ(x)] (3)

where ω 6 =0 in a neighborhood of x = 0 and (A, B) controllable. It is
immediate that

u = φ(x) + ω−1(x)v (4)

renders the linear time-invariant and controllable system

ẋ = Ax + Bv
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Example 7 : First consider the nonlinear mass–spring system
{

ẋ1 = x2

ẋ2 = − k
m

x1 −
k
m

a2x3
1 −

ω
m

x2 + f(t)
m

which can be written in the form
[

ẋ1

ẋ2

]
=

[
0 x2

− k
m

− ω
m

] [
x1

x2

]
+

[
0
1
m

]
[f − ka2x3

1].

Clearly, this system is of the form (3) with ω = 1 and φ(x) = ka2x3
1. It then

follows that the linearizing control law is

f = ka2x3
1 + v

Example 8 : Now consider the system
{

ẋ1 = x2

ẋ2 = −ax1 + bx2 + cos x1(u − x2
2)

which is of the form (3) with ω = cos x1 and φ(x) = x2
2. Substituting into

(4), we obtain the linearizing control law:

u = x2
2 + cos−1 x1 v

which is well defined for −π
2 < x1 < π

2 .
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2.2 Case 2: Systems of the Form ẋ = f(x) + g(x)u

Now consider the more general case of affine systems of the form

ẋ = f(x) + g(x)u. (5)

We look for a diffeomorphism T : D ⊂ Rn → Rn, defining the coordinate
transformation

z = T (x) (6)

and a control law of the form

u = φ(x) + ω−1(x)v (7)

that transform (5) into a state space realization of the form

ż = Az + Bv.

Assuming that, after the coordinate transformation (6), the system (5) takes
the form

ż = Az + Bω̄(z) [u − φ̄(z)]

= Az + Bω(x) [u − φ(x)] (8)

where ω̄(z) = ω(T−1(z)) and φ̄(z) = φ(T−1(z)). We have:

ż =
∂T

∂x
ẋ =

∂T

∂x
[f(x) + g(x)u]. (9)

Substituting (6) and (9) into (8), we have that

∂T

∂x
[f(x) + g(x)u] = AT (x) + Bω(x)[u − φ(x)] (10)

Equation (10) is satisfied if and only if

∂T

∂x
f(x) = AT (x) − Bω(x)φ(x) (11)

∂T

∂x
g(x) = Bω(x). (12)

Remarks: Assuming (A, B) controllable, we can assume that (A, B) are in

9



the controllable form:

Ac =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
... 0 1

0 0 · · · 0 0





n×n

, Bc =





0
0
...
...
1





n×1

Letting

T (x) =





T1(x)
T2(x)

...
Tn(x)





n×1

with A = Ac, B = Bc and z = T (x), the right-hand side of equations (11)-
(12) becomes

AcT (x) − Bcω(x)φ(x) =





T2(x)
T3(x)

...
Tn(x)

−φ(x)ω(x)




(13)

and

Bcω(x) =





0
0
...
0

ω(x)




. (14)

Substituting (13) and (14) into (11) and (12),

∂T1

∂x
f(x) = T2(x)

∂T2

∂x
f(x) = T3(x)

... (15)
∂Tn−1

∂x
f(x) = Tn(x)

∂Tn

∂x
f(x) = −φ(x)ω(x)
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and

∂T1

∂x
g(x) = 0

∂T2

∂x
g(x) = 0

... (16)
∂Tn−1

∂x
g(x) = 0

∂Tn

∂x
g(x) = ω(x) 6 =0.

Thus the components T1, T2, · · · , Tn of the coordinate transformation T must
be such that

(i)

∂Ti

∂x
g(x) = 0 ∀i = 1, 2, · · · , n − 1.

∂Tn

∂x
g(x) 6 = 0.

(ii)

∂Ti

∂x
f(x) = Ti+1 i = 1, 2, · · · , n − 1.

(iii) The functions φ and ω are given by

ω(x) =
∂Tn

∂x
g(x), φ(x) = −

(∂Tn/∂x)f(x)

(∂Tn/∂x)g(x)
.
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3 Example

Example 9 : Consider the system

ẋ =

[
ex2 − 1

ax2
1

]
+

[
0
1

]
u = f(x) + g(x)u.

We seek a transformation T = [T1, T2]
T such that

∂T1

∂x
g = 0 (17)

∂T2

∂x
g 6 = 0 (18)

with
∂T1

∂x
f(x) = T2. (19)

In our case, (17) implies that

∂T1

∂x
g =

[
∂T1

∂x1

∂T1

∂x2

] [
0
1

]
=⇒

∂T1

∂x2
= 0

so that T1 = T1(x1) (independent of x2). Taking account of (19), we have
that

∂T1

∂x
f(x) = T2

⇒

[
∂T1

∂x1

∂T1

∂x2

]
f(x) =

[
∂T1

∂x1
0

] [
ex2 − 1

ax2
1

]
= T2

⇒ T2 =
∂T1

∂x1
(ex2 − 1).

To check that (18) is satisfied we notice that

∂T2

∂x
g(x) =

[
∂T2

∂x1

∂T2

∂x2

]
g(x) =

∂T2

∂x2
=

∂

∂x2

(
∂T1

∂x1
(ex2 − 1)

)
6 =0

provided that ∂T1

∂x1

6 =0. Thus we can choose

T1(x) = x1

which results in

T =

[
x1

ex2 − 1

]
.
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The functions φ and ω can be obtained as follows:

ω =
∂T2

∂x
g(x) = ex2

φ = −
(∂T2/∂x)f(x)

(∂T2/∂x)g(x)
= −ax2

1.

It is easy to verify that, in the z-coordinates
{

z1 = x1

z2 = ex2 − 1
{

ż1 = z2

ż2 = az2
1z2 + az2

1 + (z2 + 1)u

which is of the form
ż = Az + Bω(z)[u − φ(z)]

with

A = Ac =

[
0 1
0 0

]
, B = Bc =

[
0
1

]

ω(z) = z2 + 1, φ(z) = −az2
1.
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4 Conditions for Input–State Linearization

Consider the system
ẋ = f(x) + g(x)u (20)

Theorem 2 :
The system (20) is input–state linearizable on D0 ⊂ D if and only if the

following conditions are satisfied:

(i) The vector fields {g(x), adfg(x), · · · , adn−1
f g(x)} are linearly independent

in D0.

(ii) The distribution ∆ = span{g, adfg, · · · , adn−2
f g} is involutive in D0.

Example 10 : Consider again the system of Example 9

ẋ =

[
ex2 − 1

ax2
1

]
+

[
0
1

]
u = f(x) + g(x)u.

We have,

adfg = [f, g] =
∂g

∂x
f(x) −

∂f

∂x
g(x)

[
ex2

0

]
.

Thus, we have that

{g, adfg} =

{[
0
1

]
,

[
ex2

0

]}

and

rank(C) = rank

([
0 ex2

1 0

])
= 2, ∀x ∈

Also the distribution ∆ is given by

∆ = span{g} = span

([
0
1

])

which is clearly involutive in R2. Thus conditions (i) and (ii) of Theorem 2
are satisfied ∀x ∈ R2.
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5 Input–Output Linearization

Consider the system
{

ẋ = f(x) + g(x)u f, g : D ⊂ Rn → Rn

y = h(x) h : D ⊂ Rn → R
(21)

We now consider the problem of finding a control law that renders a linear
differential equation from the input u to the output y.

Example 11 : Consider the system of the form





ẋ1 = x2

ẋ2 = −x1 − ax2
1x2 + (x2 + 1)u

y = x1.

Differentiating the output equation y = x1 we obtain

ẏ = ẋ1 = x2

which does not contain u. Differentiating once again, we obtain

ÿ = ẋ2 = −x1 − ax2
1x2 + (x2 + 1)u.

Thus, letting

u ,
1

x2 + 1

[
v + ax2

1x2

]
(x2 6 = − 1)

we obtain
ÿ = −x1 + v

or
ÿ + y = v

a linear differential equation relating y and the new input v.
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We now generalize this idea. Given (21),we proceed as follows.

• Differentiate the output equation to obtain

ẏ =
∂h

∂x
ẋ

=
∂h

∂x
f(x) +

∂h

∂x
g(x)u

= Lfh(x) + Lgh(x)u

There are two cases of interest:

– CASE (1): Lgh(x) 6 =0 ∈ D. In this case we can define

u =
1

Lgh(x)
[−Lfh + v]

that renders the linear differential equation

ẏ = v.

– CASE (2): Lgh(x) = 0 ∈ D. We continue to differentiate y until u
appears explicitly:

ÿ , y(2) =
d

dt
[
∂h

∂x
f(x)] = L2

fh(x) + LgLfh(x)u.

We continue to differentiate until, for some integer r ≤ n

y(r) = Lr
fh(x) + LgL

(r−1)
f h(x)u

with LgL
(r−1)
f h(x) 6 =0. Letting

u =
1

LgL
(r−1)
f h(x)

[
−Lr

fh + v
]

we obtain the linear differential equation

y(r) = v. (22)

Definition 8 : The number of differentiations of y required to obtain (22) is
called the relative degree of the system.
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Example 12 : Consider again the system of Example 11





ẋ1 = x2

ẋ2 = −x1 − ax2
1x2 + (x2 + 1)u

y = x1

we saw that

ẏ = x2

ÿ = −x1 − ax2
1x2 + (x2 + 1)u

hence the system has relative degree 2 in D0 = {x ∈ R2 : x2 6 = − 1}.

Example 13 : Consider the linear time-invariant system defined by
{

ẋ = Ax + Bu
y = Cx

where

A =





0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−2 −3 −5 −1 −4





5×5

, B =





0
0
0
0
1





5×1

C =
[

7 2 6 0 0
]
1×5

We have:

ẏ = CAx + CBu, CB = 0

y(2) = CA2x + CABu, CAB = 0

y(3) = CA3x + CA2Bu, CA2B = 6

Thus, r = 3. The transfer function associated with this state space realization
is

Ĥ(s) = C(sI − A)−1B =
6s2 + 2s + 7

s5 + 4s4 + s3 + 5s2 + 3s + 2

thus the relative degree is the excess number of poles over zeros.
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6 The Zero Dynamics

We now discuss in more detail the internal dynamics of systems controlled
via input–output linearization. Consider first the SISO linear time-invariant
system 


ẋ1

ẋ2

ẋ3



 =




0 1 0
0 0 1

−q0 −q1 −q2








x1

x2

x3



 +




0
0
1



 u

y =
[

p0 p1 0
]




x1

x2

x3



 .

The transfer function associated with this system is

Ĥ(s) =
p0 + p1s

q0 + q1s + q2s2 + s3
u.

Our objective is to design u so that y tracks a desired output yd. We proceed
using the input–output linearization technique (even though the system is
linear).

y = p0x1 + p1x2

⇒ ẏ = p0x2 + p1x3

ÿ = p0x3 + p1(−q0x1 − q1x2 − q2x3) + p1u.

Thus, the control law

u =

[
q0x1 + q1x2 + q2x3 −

p0

p1
x3

]
+

1

p1
v

produces the simple double integrator

ÿ = v.

Define the tracking error e = y − yd and choose v = −k1e − k2ė + ÿd.

ë = ÿ − ÿd

ë = −k1e − k2ė

With this input v we have that

u =

[
q0x1 + q1x2 + q2x3 −

p0

p1
x3

]
+

1

p1
[−k1e − k2ė + ÿd]
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which renders the exponentially stable tracking error closed-loop system

ë + k2ė + k1e = 0. (23)

Remarks:

• The order of the closed-loop tacking error is the same as the relative order
of the system (r = 2).

• The original state space realization has order n = 3. This means that,
after “shifting” the eigenvalues of the A matrix, part of the dynamics of
the original system is now unobservable after the input–output lineariza-
tion.

• To complete the three-dimensional state, we can consider the output
equation

y = p0x1 + p1x2 = p0x1 + p1ẋ1.

Thus,

ẋ1 = −
p0

p1
x1 +

1

p1
y = Aid x1 + Bid y. (24)

• The system (24) contains the unobservable dynamics and is called the
internal dynamics. The transfer function of this internal dynamics is

Ĥid =
1

p0 + p1s
.

which contains a pole whose location in the s plane coincides with that
of the zero of Ĥ, thus leading to the loss of observability.

• This implies that the internal dynamics of the original system is expo-
nentially stable, provided that the zeros of the transfer function Ĥid are
in the left-half plane.

The effectiveness of the input-output linearization technique depends upon
the stability of the internal dynamics.
Property The zero dynamics can be defined as the internal dynamics of the
system when the output is kept identically zero by a suitable input function.

19



Example 14 : Consider the system





ẋ1 = −kx1 − 2x2u

ẋ2 = −x2 + x1u
y = x2

Differentiating y, we obtain

ẏ = ẋ2 = −x2 + x1u.

Therefore, r = 1. To determine the zero dynamics, we proceed as follows:

y = 0 ⇐⇒ x2 = 0 ⇐⇒ u = 0.

Then, the zero dynamics is given by

x1 = −kx1

which is exponentially stable (globally) if k > 0, and unstable if k < 0.

Example 15 : Consider the system





ẋ1 = x2 + x2
1

ẋ2 = x3
2 + u

ẋ3 = x1 + x3
2 + αx3

y = x1

Differentiating y, we obtain

ẏ = ẋ1 = x2 + x2
1

ÿ = 2x1ẋ1 + ẋ2 = 2x1(x2 + x2
1) + x3

2 + u

Therefore r = 2. To find the zero dynamics, we proceed as follows:

y = 0 ⇐⇒ x1 = 0 ⇒ ẋ1 = 0x2 + x2
1 ⇒ x2 = 0

ẋ2 = x3
2 + u = 0 ⇐⇒ u = −x3

2.

Therefore the zero dynamics is given by

ẋ3 = αx3.

Moreover, the zero dynamics is asymptotically stable if α < 0, and unstable
if α > 0.
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