
Chapter 3: Lyapunov Stability I: Autonomous
Systems

1 Definitions

Consider the autonomous system

ẋ = f(x) f : D → Rn (1)

Definition 1 : xe is an equilibrium point of (1) if

f(xe) = 0.

We want to know whether or not the trajecories near an equilibrium point
are “well behaved”.

Definition 2 : xe is said to be stable if for each ǫ > 0,

∃δ = δ(ǫ) > 0

‖x(0)− xe‖ < δ ⇒ ‖x(t) − xe‖ < ǫ ∀t ≥ t0

otherwise, the equilibrium point is said to be unstable.

IMPORTANT: This notion applies to the equilibrium, not “the system.” A
dynamical system can have several equilibrium points.
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Figure 1: Stable equilibrium point.
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Figure 2: Asymptotically stable equilibrium point.

Definition 3 : xe of the system (1) is said to be convergent if there exists δ1 > 0 :

‖x(0)− xe‖ < δ1 ⇒ lim
t→∞

x(t) = xe.

Equivalently, xe is convergent if for any given ǫ1 > 0, ∃T such that

‖x(0)− xe‖ < δ1 ⇒ ‖x(t) − xe‖ < ǫ1 ∀t ≥ t0 + T.

Definition 4 : xe is said to be asymptotically stable if it is both stable and con-
vergent.
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Definition 5 : xe is said to be (locally) exponentially stable if there exist two
real constants α, λ > 0 such that

‖x(t) − xe‖ ≤ α ‖x(0) − xe‖ e−λt ∀t > 0 (2)

whenever ‖x(0)− xe‖ < δ. It is said to be globally exponentially stable if (2)
holds for any x ∈ Rn.

Note: Clearly, exponential stability implies asymptotic stability. The con-
verse is, however, not true.

Remarks: We can always assume that xe = 0. Given any other equilibrium
point we can make a change of variables and define a new system with an
equilibrium point at x = 0. Define:

y = x− xe

⇒ ẏ = ẋ = f(x)

⇒ f(x) = f(y + xe) , g(y).

Thus, the equilibrium point ye of the new systems ẏ = g(y) is ye = 0, since

g(0) = f(0 + xe) = f(xe) = 0.

Thus, xe is stable for the system ẋ = f(x) if and only if y = 0 is stable for
the system ẏ = g(y).
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2 Positive Definite Functions

Definition 6 : V : D → R is positive semi definite in D if

(i) 0 ∈ D and V (0) = 0.

(ii) V (x) ≥ 0, ∀x in D − {0}.
V : D → R is positive definite in D if

(ii’) V (x) > 0 in D − {0}.
V : D → R is negative definite (semi definite)in D if −V is positive

definite (semi definite).
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Example 1 : (Quadratic form)

V (x) : Rn → R = xTQx , Q ∈ Rn×n, Q = QT .

Since Q = QT , its eigenvalues λi, i = 1, · · ·n, are all real. Thus

V (·) positive definite ⇐⇒ λi > 0, ∀i = 1, · · · , n
V (·) positive semidefinite ⇐⇒ λi ≥ 0, ∀i = 1, · · · , n

V (·) negative definite ⇐⇒ λi < 0, ∀i = 1, · · · , n
V (·) negative semidefinite ⇐⇒ λi ≤ 0, ∀i = 1, · · · , n

2

Notation: Given a dynamical system and a function V we will denote

V̇ (x) =
dV

dt
=

∂V

∂x

dx

dt
= ∇V · f(x)

=

[
∂V

∂x1
,
∂V

∂x2
, · · · , ∂V

∂xn

]

f1(x)

...
fn(x)


 .

Example 2 : Let

ẋ =

[
ax1

bx2 + cosx1

]

and define V = x2
1 + x2

2. Thus, we have

V̇ (x) =
∂V

∂x
f(x) = [2x1, 2x2]

[
ax1

bx2 + cosx1

]

= 2ax2
1 + 2bx2

2 + 2x2 cosx1.

2

Notice that the V̇ (x) depends on the system’s equation f(x) and thus it
will be different for different systems.
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Note:

V = xTQx, where Q = QT

if Q = Qsym +Qasym

Qsym =
Q+QT

2

Qasym =
Q−QT

2
Then, V = xTQsymx+ xTQasymx

where, Qasym =




0 a b

−a . . . ...
−b · · · 0


 i.e. skew symmetric

and xTQasymx = 0

∴ V = xTQsymx ∴ Q is always symmetric

Theorem: Rayleigh-Ritz theorem

λmin {Q} ‖x‖2 ≤ xTQx ≤ λmax {Q} ‖x‖2
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3 Stability Theorems

Theorem 1 : (Lyapunov Stability Theorem) Let x = 0 be an equilibrium point
of ẋ = f(x), and let V : D → R be a continuously differentiable function
such that

(i) V (0) = 0,

(ii) V (x) > 0 in D − {0},
(iii) V̇ (x) ≤ 0 in D − {0},
thus x = 0 is stable.

Theorem 2 : (Asymptotic Stability Theorem) Under the conditions of Theorem
1, if V (·) is such that

(i) V (0) = 0,

(ii) V (x) > 0 in D − {0},
(iii) V̇ (x) < 0 in D − {0},
thus x = 0 is asymptotically stable.
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Proof of theorem 1: Choose r > 0 and define

Br = {x ∈ Rn : ‖x‖ ≤ r} ⊂ D

is contained in D. Br, so defined is a closed and bounded (“compact”) set (a
sphere).

We now construct a Lyapunov surface inside Br and show that all trajec-
tories starting near x = 0 remain inside the surface. Let

α = min
‖x‖=r

V (x) (thus α > 0)

Now choose β ∈ (0, α) and denote

Ωβ = {x ∈ Br : V (x) ≤ β}.

Thus, by construction, Ωβ ⊂ Br. Assume now that x(0) ∈ Ωβ.

V̇ (x) ≤ 0 ⇒ V (x) ≤ V (x(0)) ≤ β ∀t ≥ 0.

Trajectories starting in Ωβ at t = 0 stays inside Ωβ for all t ≥ 0. By the

continuity of V (x), ∃δ > 0:

‖x‖ < δ ⇒ V (x) < β (Bδ ⊂ Ωβ ⊂ Br).

It then follows that

‖x(0)‖ < δ ⇒ x(t) ∈ Ωβ ⊂ Br ∀t > 0

and then
‖x(0)‖ < δ ⇒ ‖x(t)‖ < r ≤ ǫ ∀t ≥ 0

which means that the equilibrium x = 0 is stable. 2

Proof of theorem 2: Similar, only that V̇ (x) < 0 in D implies that Ωβ

is “shrinking” until eventually it becomes the single point x = 0. 2
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Figure 3: Pendulum without friction.

4 Examples

Example 3 : (Pendulum Without Friction)
Using Newton’s second law of motion we have,

ma = −mg sin θ

a = lα = lθ̈

where l is the length of the pendulum, and α is the angular acceleration. Thus

mlθ̈ +mg sin θ = 0

or θ̈ +
g

l
sin θ = 0

choosing state variables {
x1 = θ

x2 = θ̇

we have {
ẋ1 = x2 = f1(x)

ẋ2 = −g
l sin x1 = f2(x)

To study the stability of the equilibrium at the origin, we need to propose a
Lyapunov function candidate V (x). This is difficult! In this case we “try”
the total energy, which is a positive function. We have

E = K + P (kinetic plus potential energy)

=
1

2
m(ωl)2 +mgh
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where

ω = θ̇ = x2

h = l(1 − cos θ) = l(1 − cosx1).

Thus

E =
1

2
ml2x2

2 +mgl(1 − cosx1).

We now define V (x) = E. We see that because of the periodicity of cos(x1),

we have that V (x) = 0 whenever x = (x1, x2)
T = (2kπ, 0)T , k = 1, 2, · · ·.

Thus, V (·) is not positive definite. However, restricting the domain of x1 to

the interval (−2π, 2π); i.e., we take V : D → R, with D = ((−2π, 2π), R)T .
We have that V : D → R > 0 is indeed positive definite. Also

V̇ (x) = ∇V · f(x)

=

[
∂V

∂x1
,
∂V

∂x2

]
[f1(x), f2(x)]

T

= [mgl sin x1, ml
2x2][x2,−

g

l
sin x1]

T

= mglx2 sinx1 −mglx2 sin x1 = 0.

Thus V̇ (x) = 0 and the origin is stable by Theorem 1. 2
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Example 4 : (Pendulum with Friction) We now modify the previous example
by adding the friction force klθ̇

mlθ̈ = −mg sin θ − klθ̇

defining the same state variables as in example 3 we have
{
ẋ1 = x2

ẋ2 = −g
l sin x1 − k

mx2.

Again x = 0 is an equilibrium point. The energy is the same as in Example

3. Thus

V (x) =
1

2
ml2x2

2 +mgl(1 − cosx1) > 0 in D − {0}

V̇ (x) = ∇V · f(x)

=

[
∂V

∂x1
,
∂V

∂x2

]
[f1(x), f2(x)]

T

= [mgl sinx1, ml
2x2][x2,−

g

l
sinx1 −

k

m
x2]

T

= −kl2x2
2.

Thus V̇ (x) is negative semi-definite. It is not negative definite since V̇ (x) = 0
for x2 = 0, regardless of the value of x1 (thus V̇ (x) = 0 along the x1 axis).
We conclude that the origin is stable by Theorem 1, but cannot conclude
asymptotic stability. 2

The result is disappointing. We know that a pendulum with friction cin-
verges to x = 0. This example emphasizes the fact that all of the Lyapunov
theorems provide sufficient but not necessary conditions for stability.
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Example 5 : Consider the following system:

ẋ1 = x1(x
2
1 + x2

2 − β2) + x2

ẋ2 = −x1 + x2(x
2
1 + x2

2 − β2).

To study the equilibrium point at the origin, we define V (x) = 1/2(x2
1 + x2

2).

We have

V̇ (x) = ∇V · f(x)

= [x1, x2][x1(x
2
1 + x2

2 − β2) + x2
2,−x1x2(x

2
1 + x2

2 − β2)]T

= x2
1(x

2
1 + x2

2 − β2) + x2
2(x

2
1 + x2

2 − β2)

= (x2
1 + x2

2)(x
2
1 + x2

2 − β2).

Thus, V (x) > 0 and V̇ (x) ≤ 0, provided that (x2
1 + x2

2) < β2, and it follows
that the origin is an asymptotically stable equilibrium point. 2
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5 Asymptotic Stability in the Large

Definition 7 : The equilibrium state xe is globally asymptotically stable (or A.S.
in the large), if it is stable and every motion converges to the equilibrium as
t→ ∞.

Question Can we infer that if the conditions of Theorem 2 hold in the whole
space Rn, then the asymptotic stability of the equilibrium is global?

Answer: No! and the next example illustrates this.
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Figure 4: The curves V (x) = β.

Example 6 : Consider the following positive definite function:

V (x) =
x2

1

1 + x2
1

+ x2
2.

The region V (x) ≤ β is closed for values of β < 1. However, if β > 1, the
surface is open. Figure 4 shows that an initial state can diverge from the
equilibrium state at the origin while moving towards lower energy curves. 2

Definition 8 : Let V : D → R be a continuously differentiable function. Then

V (x) is said to be radially unbounded if

V (x) → ∞ as ‖x‖ → ∞.

Theorem 3 : (Global Asymptotic Stability) Under the conditions of Theorem 2,
if V (·) is radially unbounded then x = 0 is globally asymptotically stable.
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6 Positive Definite Functions Revisited

Definition 9 : A continuous function α : [0, a) → R+ is said to be in the class
K if

(i) α(0) = 0.

(ii) It is strictly increasing.

α is said to be in the class K∞ if in addition α : R+ → R+ and α(r) → ∞
as r → ∞.

In the sequel, Br represents the ball

Br = {x ∈ Rn : ‖x‖ ≤ r}.

Lemma 4 : V : D → R is positive definite if and only if there exists class K
functions α1 and α2 such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Br ⊂ D.

Moreover, if D = Rn and V (·) is radially unbounded then α1 and α2 can be
chosen in the class K∞.

Example 7 : Let V (x) = xTPx, where P is a constant positive definite sym-

metric matrix. Denote λmin(P ) and λmax(P ) the minimum and maximum
eigenvalues of P , respectively. We have:

λmin(P )‖x‖2 ≤ xTPx ≤ λmax(P )‖x‖2

λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2.

Thus, α1, α2 : [0,∞) → R+, and are defined by

α1(x) = λmin(P )‖x‖2

α2(x) = λmax(P )‖x‖2.

2
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Lemma 5 : x = 0 is stable if and only if there exists a class K function α(·)
and a constant δ such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ α(‖x(0)‖) ∀t ≥ 0. (3)

A stronger class of functions is needed in the definition of asymptotic stability.

Definition 10 : A continuous function β : [0, a)×R+ → R+ is said to be in the
class KL if

(i) For fixed s, β(r, s) is in the class K with respect to r.

(ii) For fixed r, β(r, s) is decreasing with respect to s.

(iii) β(r, s) → 0 as s→ ∞.

Lemma 6 : The equilibrium x = 0 of the system (1) is asymptotically stable if

and only if there exists a class KL function β(·, ·) and a constant δ such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ β(‖x(0)‖, t) ∀t ≥ 0. (4)
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6.1 Exponential Stability

Theorem 7 : Suppose that all the conditions of Theorem 2 are satisfied, and in

addition assume that there exist positive constants K1, K2, K3 and p such
that

K1‖x‖p ≤ V (x) ≤ K2‖x‖p

V̇ (x) ≤ −K3‖x‖p.

Then the origin is exponentially stable. Moreover, if the conditions hold glob-
ally, the x = 0 is globally exponentially stable.

Proof : According to the assumptions of Theorem 7, the function V (x) sat-

isfies Lemma 4 with α1(·) and α2(·), satisfying somewhat strong conditions.
Indeed, by assumption

K1‖x‖p ≤ V (x) ≤ K2‖x‖p

V̇ (x) ≤ −K3‖x‖p

≤ −K3

K2
V (x)

i.e.
V̇ (x) ≤ −K3

K2
V (x)

⇒ V (x) ≤ V (x0)e
−(K3/K2)t

⇒ ‖x‖ ≤ [V (x)
K1

]1/p ≤ [V (x0)e
−(K3/K2)t

K1
]1/p

or

‖x(t)‖ ≤ ‖x0‖ [
K2

K1
]1/p e−(K3/ρK2)t.

2
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7 The Invariance Principle

Asymptotic stability is always more desirable that stability. Lyapunov func-
tions often fail to identify asymptotic stability. We now study an improve-
ment over the Lyapunov theorems studied earlier.

Definition 11 : A set M is said to be an invariant set with respect to the dy-

namical system ẋ = f(x) if:

x(0) ∈M ⇒ x(t) ∈M ∀t ∈ R+.

Example 8 : Any equilibrium point is an invariant set, since if at t = 0 we have
x(0) = xe, then x(t) = xe ∀t ≥ 0. 2

Example 9 : For autonomous systems, any trajectory is an invariant set. 2

Example 10 : A limit cycle is an invariant set (a special case of Example 9).
2

Example 11 : If V (x) is continuously differentiable (not necessarily positive

definite) and satisfies V̇ (x) < 0 along the solutions of ẋ = f(x), then the set
Ωl defined by

Ωl = {x ∈ Rn : V (x) ≤ l}
is an invariant set. 2
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Theorem 8 : The equilibrium point x = 0 of the autonomous system (1) is
asymptotically stable if there exists a function V (x) satisfying

(i) V (x) positive definite ∀x ∈ D, where we assume that 0 ∈ D.

(ii) V̇ (x) is negative semi definite in a bounded region R ⊂ D.

(iii) V̇ (x) does not vanish identically along any trajectory in R, other than
the null solution x = 0.

Example 12 : Consider again the pendulum with friction of Example 4:

ẋ1 = x2 (5)

ẋ2 = −g
l

sinx1 −
k

m
x2. (6)

Again

V (x) > 0 ∀x ∈ (−π, π) ×R,

V̇ (x) = −kl2x2
2 (7)

which is negative semi definite since V̇ (x) = 0 for all x = [x1, 0]T (so x = 0
stable but cannot conclude AS). We now apply Theorem 8. Conditions (i)

and (ii) of Theorem 8 are satisfied in the region

R =

[
x1

x2

]

with −π < x1 < π, and −a < x2 < a, for any a ∈ R+. We now check
condition (iii), that is, we check whether V̇ can vanish identically along the
trajectories trapped in R, other than the null solution.

By (7) we have

V̇ (x) = 0 ⇒ 0 = −kl2x2
2 ⇐⇒ x2 = 0

thus x2 = 0 ∀t ⇒ ẋ2 = 0

and by (6), we obtain

0 =
g

l
sinx1 −

k

m
x2 andthus x2 = 0 ⇒ sinx1 = 0

restricting x1 to x1 ∈ (−π, π) we have that the last condition is satisfied if
and only if x1 = 0. Thus, V̇ (x) = 0 does not vanish identically along any
trajectory other than x = 0. Thus x = 0 is asymptotically stable by Theorem
8. 2
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Theorem 9 : The null solution x = 0 of the autonomous system (1) is asymp-
totically stable in the large if the assumptions of theorem 8 hold in the entire
state space and V (·) is radially unbounded.

Example 13 :

ẋ1 = x2

ẋ2 = −x2 − αx1 − (x1 + x2)
2x2.

where α is a positive scalar.
To study the stability of x = 0 we define V (x) = αx2

1 + x2
2 (Radially

unbounded). Thus differentiating V (x)

V̇ (x) =
∂V

∂x
f(x)

= −2x2
2[1 + (x1 + x2)

2]

and V (x) > 0 and V̇ (x) ≤ 0 since V̇ (x) = 0 for x = (x1, 0). Assume now

that V̇ = 0:

V̇ = 0 ⇐⇒ x2 = 0 , x2 = 0 ∀t ⇒ ẋ2 = 0

ẋ2 = 0 ⇒ −x2 − αx1 − (x1 + x2)
2x2 = 0

and considering the fact that x2 = 0, the last equation implies that x1 = 0.
It follows that V̇ (x) does not vanish identically along any solution other

than x = [0, 0]T . Thus, x = 0 is globally asymptotically stable. 2

Theorem 10 : (LaSalle’s theorem) Let V : D → R be a continuously differen-
tiable function and assume that

(i) M ⊂ D is a compact set, invariant with respect to the solutions of (1).

(ii) V̇ ≤ 0 in M .

(iii) E : {x : x ∈M, and V̇ = 0}; that is, E is the set of all points of M such
that V̇ = 0.

(iv) N : is the largest invariant set in E.

Then every solution starting in M approaches N as t→ ∞.
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8 Region of Attraction

Example 14 : Consider the system defined by
{
ẋ1 = 3x2

ẋ2 = −5x1 + x3
1 − 2x2.

We are interested in the stability of x = 0. Consider

V (x) = 12x2
1 − x4

1 + 6x1x2 + 6x2
2

= 3(x1 + 2x2)
2 + 9x2

1 + 3x2
2 − x4

1 (8)

V̇ (x) = −6x2
2 − 30x2

1 + 6x4
1. (9)

According to Theorem 2, if V (x) > 0 and V̇ < 0 in D − {0}, then x = 0 is
“locally” asymptotically stable.

Studying V and V̇ we conclude that defining D by

D = {x ∈ R2 : −1.6 < x1 < 1.6} (10)

we have that V (x) > 0 and V̇ < 0, ∀x ∈ D − {0}.
Question: Can we conclude that any solution starting in D converges to the
origin? No!

Plotting the trajectories as shown in we see that, for example, the trajectory
initiating at the point x1 = 0, x2 = 4 is quickly divergent from x = 0 even
though the point (0, 4) ∈ D.

The problem is this: D is not an invariant set and there are no guarantees
that trajectories starting in D will remain within D. Thus, once a trajec-
tory crosses the border |x1| =

√
5 there are no guarantees that V̇ (x) will be

negative. 2

We now study how to estimate the region of attraction.

Definition 12 : Let ψ(x, t) be the trajectories of the systems (1) with initial

condition x at t = 0. The region of attraction to the equilibrium point xe,
denoted RA, is defined by

RA = {x ∈ D : ψ(x, t) → xe, as t→ ∞}.
We nos estimate this region based on LaSalle’s Theorem.
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Theorem 11 : Let V : D → R be a continuous differentiable function and
assume that xe is an equilibrium point and

(i) M ⊂ D is a compact set containing xe, invariant with respect to the
solutions of (1).

(ii) V̇ is such that

V̇ < 0 ∀x 6 =xe ∈M.

V̇ = 0 if x = xe.

Under these conditions we have that

M ⊂ RA.

Example 15 :

ẋ = −kx+ x3

V =
1

2
x2

V̇ = xẋ

= −kx2 + x4

= −
(
K − x2

)
x2

V̇ ≤ −βx2 for k > x2

V̇ ≤ −βx2 for k > 2V (t) {V (0) > V (t)}
V̇ ≤ −βx2 for k > 2V (0)

V̇ ≤ −βx2 for k > x2(0)

V̇ ≤ −2βV (t) for k > x2(0)

V (t) ≤ V (0) exp(−2βt) for K > x2(t)
1

2
x2(t) ≤ 1

2
x2(0) exp(−2βt)

|x(t)| ≤ |x(0)| exp(−βt) for K > |x(0)|2
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9 Analysis of Linear Time-Invariant Systems

Consider the autonomous linear time-invariant system given by

ẋ = Ax, A ∈ Rn×n (11)

and let V (·) be defined as follows

V (x) = xTPx (12)

where P ∈ Rn×n is (i) symmetric and (ii) positive definite (iii) P is a constant.

Thus V (·) is positive definite. Also

V̇ = ẋTPx+ xTPẋ

= xT (ATP + PA)x

or

V̇ = −xTQx (13)

PA+ ATP = −Q. (14)

Here the matrix Q is symmetric, since

QT = −(PA+ ATP )T = −(ATP +AP ) = Q

If Q is positive definite, then V̇ (·) is negative definite and the origin is (glob-
ally) asymptotically stable. To analyze the positive definiteness of the pair
of matrices (P,Q) we need two steps:

(i) Choose an arbitrary symmetric, positive definite matrix Q.

(ii) Find P that satisfies equation (14) and verify that it is positive definite.

Equation (14) appears very frequently in the literature and is called Algebraic
Lyapunov equation.

The procedure described above for the stability analysis based on the pair
(P,Q) depends on the existence of a unique solution of the Lyapunov equation
for a given matrix A. The following theorem guarantees the existence of such
a solution.
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Theorem 12 : The eigenvalues λi of a matrix A ∈ Rn×n satisfy ℜe(λi) < 0 if
and only if for any given symmetric positive definite matrix Q there exists a
unique positive definite symmetric matrix P satisfying the Lyapunov equation
(14)

Proof : Assume first that given Q > 0, ∃ P > 0 satisfying (14). Thus
V = xTPx > 0 and V̇ = −xTQx < 0 and asymptotic stability follows from
Theorem 2.

For the converse assume that ℜe(λi) < 0 and given Q, define P as follows:

P =

∫ ∞

0

eAT tQeAt dt

which is symmetric. We claim that it is also positive definite. To see this,

assume the opposite: i.e. that ∃x 6 =0 such that xTPx = 0. But then

xTPx = 0 ⇒
∫ ∞

0

xTeAT tQeAtx dt = 0

⇒
∫ ∞

0

yTQy dt = 0 with y = eAtx

⇐⇒ y = eAtx = 0 ∀t ≥ 0

⇐⇒ x = 0

since eAt is nonsingular ∀t. This contradicts the assumption. Thus P > 0.
We now show that P satisfies the Lyapunov equation

PA+ATP =

∫ ∞

0

eAT tQeAtA dt +

∫ ∞

0

ATeAT tQeAt dt

=

∫ ∞

0

d

dt
(eAT tQeAt) dt

= eAT tQeAt |∞0 = −Q
To complete the proof, there remains to show that this P is unique. Suppose
that there is another solution P̃ 6 =P . Then

(P − P̃ )A+ AT (P − P̃ ) = 0

⇒ eAT t
[
(P − P̃ )A+ AT (P − P̃ )

]
eAt = 0

⇒ d

dt

[
eAT t(P − P̃ )eAt

]
= 0

which implies that eAT t(P − P̃ )eAt is constant ∀t. This can be the case if and

only if P − P̃ = 0, or equivalently, P = P̃ . 2
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10 Instability

Theorem 13 : (Chetaev) Consider the autonomous dynamical systems (1) and
assume that x = 0 is an equilibrium point. Let V : D → R have the following
properties:

(i) V (0) = 0

(ii) ∃ x0 ∈ Rn, arbitrarily close to x = 0, such that V (x0) > 0

(iii) V̇ > 0 ∀ x ∈ U , where the set U is defined as follows:

U = {x ∈ D : ‖x‖ ≤ ǫ, and V (x) > 0}.

Under these conditions, x = 0 is unstable.

Example 16 : Consider again the system of Example 3.20 (textbook)

ẋ1 = x2 + x1(β
2 − x2

1 − x2
2)

ẋ2 = −x1 + x2(β
2 − x2

1 − x2
2)

The origin of this system is an unstable equilibrium point. We now verify
this result using Chetaev’s result. Let V (x) = 1/2(x2

1 + x2
2). Thus we have

that V (0) = 0, and moreover V (x) > 0 ∀ x ∈ R2 6 =0, ı.e., V (·) is positive
definite. Also

V̇ = (x1, x2)f(x)

= (x2
1 + x2

2)(β
2 − x2

1 − x2
2).

Defining the set U by

U = {x ∈ R2 : ‖x‖ ≤ ǫ, 0 < ǫ < β}

we have that V (x) > 0 ∀ x ∈ U, x 6 =0, and V̇ > 0 ∀ x ∈ U, x 6 =0. Thus the
origin is unstable, by Chetaev’s result.

2
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