Chapter 4: Lyapunov Stability II:
Nonautonomous Systems

1 Definitions
Consider the non-autonomous system:
= f(x,t) f:DxR"— R" (1)

where f is locally Lipschitz in 2 and piecewise continuous in ¢ on D x [0, c0).
x =0 € D is an equilibrium point of (1) if

fO,)=0 Vt>t,.

Definition 1 . © = 0 is said to be
« Stable at ty if given e >0, 30 = (e, ty) > 0 :
lz(0)|| <6 = Jz(t)]| <e Vt>ty>0 (2)

« Convergent at t if there exists 61 = 01(tg) > 0 :
|lz(0)]| <& = tlim z(t) = 0. (3)

FEquivalently (and more precisely), xq is convergent at ty if for any given
€1 > 0,37 = T(ey,ty) such that

|lz(0)|| <o = |lz(t)||<ea VE>te+T (4)

« Asymptotically stable at ty if it is both stable and convergent.
« Unstable if it is not stable.

Notice the inclusion of the initial time ¢;. This dependence is not desirable
and motivates the several notions of uniform stability.



Definition 2 © The equilibrium point x = 0 of the system (1) is said to be
o Uniformly stable if any given ¢ > 0, 36 = d(e) > 0
lz(0)|| <6 = |z(®)||<e Vt>ty>0 (5)

o Uniformly convergent if there is d; > 0, independent of ty, such that
|lzol] <01 = z(t) =0 as t — oc.

Equivalently, x = 0 is uniformly convergent if for any given e; > 0,37 =
T(e1) such that

||$(0)|| <0 = H.ZC(t)H <€ Vt>tg+T

o Uniformly asymptotically stable if it is uniformly stable and uniformly
convergent.

o Globally uniformly asymptotically stable if it is uniformly asymptotically
stable and every motion converges to the origin.

2 Positive Definite Functions

In the following definitions we consider a function W : D x R™ — R. Fur-
thermore we assume that

@ 0€ D.

(i) W (x,t) is continuous and has continuous partial derivatives with respect
to all of its arguments.

Definition 3 = W (+,-) is said to be positive semi definite in D if
() W(0,t) =0 Vt € RT
(ii) W(SIS t) >0 Vx #O,l’ eD



Definition 4 © W (-, ) is said to be positive definite in D if
() W(0,t) =0 Vt € R*
(i) 3 a time-invariant positive definite function Vi(x) such that

Vi(z) < W(z,t) Vx e D. (6)

Definition 5 : W (-, ) is said to be decrescent in D if there exists a positive
definite function Va(x) such that

Wz, t)| < Va(x) Ve e D. (7)
(= every time-invariant positive definite function is decrescent.)
Definition 6 © W (-, ) is radially unbounded if
W(x,t) 00 as |z] — oo

uniformly on t. Equivalently, W (-,-) is radially unbounded if given M,3IN >
0 such that

W(z,t) > M
for all t, provided that ||x|| > N.

Remarks: Consider now function W (z,t). By Definition 6, W (-, -) is positive
definite in D if and only if 3V;(z) such that

Vi(z) < W(z,t), VxeD (8)
this implies the existence of a class x function «;(+) such that
ar(f|z]])) <Vi(x) < W(x,t), VreB,CD. 9)

If in addition W(-,-) is decrescent, then, according to Definition (7) there
exists V5:
W(x,t) < Va(x), VreD (10)

this implies the existence of a class k function as(-) such that
W(z,t) < Va(x) < as(||z]]), VYxe B, CD. (11)

It follows that W (-,-) is positive definite and decrescent if and only if there
exist positive definite functions Vi(-) and V5(-), such that

Vilz) < W(z,t) < Vo(x), VxeD (12)
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which in turn implies the existence of a;(-) and as(-) € K such that

a(f|z]]) < W(x,t) < aol||z||), VreB,CD. (13)

Finally, W (-, -) is positive definite, decrescent and radially unbounded if and
only if a;(+) and as(-) can be chosen in the class K.



2.1 Examples
Let # = [z1, 75])T and study several functions W (z, ).
Example 1 : Let Wi(x,t) = (27 + 23)e " a > 0. We have:

() W1(0,t) =0e =0 .

i) Wi(x,t) >0 Vo &0, VteR.
Howewver, tlirglowl(x,t) =0 Vx. Thus, Wi(-,-) is positive semi definite, but
not positive definite. U
Example 2 © Let
(22 + 23)(t* + 1)

(21 +2)

= K@) +1), Vi) =

WQ(ZE, t) =

(21 + 3)
(zf+2)
Thus, Wo(x,t) > Va(z) > 0V € R? and Wa(-,-) positive definite. Also
tlim Wy(z,t) =00 Vo€ R
Thus we cannot find a positive definite function V(-) such that [Wa(x,t)| <

V(x) VY. Thus Ws(x,t) is not decrescent. |Ws(x,t)| is not radially unbounded
since Wa(x,t) — 00 as x1 — o0.

Example 3 Let

Wa(z,t) = (23 +23)(t* +1)

Ws(x) is positive definite, radially unbounded and not decrescent. U
Example 4 Let

(1 + 75)

(i +1)

Thus, Wy(-,-) > OVx € R? and is positive definite. It is not time-dependent,
and so it 1s decrescent. It is not radially unbounded. U

W4($, t) =

Example 5 Let
(22 + 22) (2 + 1)
(12 + 2)
(t*+1)
— V B ———
Wiy

W5(ZC, t) =

Vs(z) £ (aF + 23).
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Thus, Ws(x,t) > kiVs(x) for some constant ky, which implies that Wy(-,-) is
positive definite. It is decrescent since

|(Ws(x,t)] < kVs(z) Vo €
It is also radially unbounded since

Ws(z,t) - 00 as |z|| — oo.



3 Stability Theorems

Consider the system (1) and assume that = = 0 is an equilibrium state of:
f(0,t) =0 Vte.

In the following theorems, we assume that W(-,-) has continuous partial

derivatives in all of its arguments.

Theorem 1 : (Stability Theorem) If in a neighborhood D of x = 0 there exists
W(,): D x[0,00) — R such that

(i) W(x,t) is positive definite.

(ii) The derivative of W (-,-) along any solution of (1) is negative semi definite
i D, then

the equilibrium state is stable. If W (x,t) is also decrescent then the origin is
uniformly stable.

Theorem 2 : (Uniform Asymptotic Stability) If in a neighborhood D of the
equilibrium state x = 0 there exists W(-,-) : D x [0,00) — R such that

() W(x,t) is (a) positive definite, and (b) decrescent, and
(i) The deriwative of W(x,t) 1s negative definite in D, then
the equilibrium state is uniformly asymptotically stable.

The assumptions in Theorem 2 mean that:

0 Vi(z) < W(x,t) < Vo(z) Vo e DVt

) O+ VW f(x,t) < —V3(z) Yz € D,Vt

where V;,7 = 1,2, 3 are positive definite functions in D.



Theorem 3 : (Global Uniform Asymptotic Stability) If there exists W(-,-) :
R" x [0,00) — R such that

(i) W(x,t) is (a) positive definite, and (b) decrescent, and radially unbounded
Vo € R", and such that

(i) The deriwative of W(x,t) s negative definite Vo € R", then

the equilibrium state at x = 0 s globally uniformly asymptotically stable.

Theorem 4 : Suppose that all the conditions of Theorem 2 are satisfied, and in
addition assume that there exist positive constants K, Ky, and K3 such that

Kzl < Wt < K|
W) < —Kslz|P.

Then the origin is exponentially stable. Moreover, if the conditions hold glob-
ally, the x = 0 s globally exponentially stable.



Example 6 . Consider the following system:
{ i = —xp—e Mr, = fi

Ty = T — X2 = Jfo
To study the stability of x = 0, let

Wiz, t) =23 4+ (1 4+ e )3
Clearly

Vifz) = (ai+a3) < W(nt) < (21+223) = Vi)

thus, we have that

e W(x,t) is positive definite, since Vi(x) < W(x,t), with Vi positive defi-
nite in R

e W(x,t) is decrescent, since W (x,t) > Va(x), with Vs also positive definite
in R?.

Then
Wiz, t) = %—I/;/f(gs,t)nL%—Vz/
= 202 — zywy + 25(1 4+ 2]
Wiz,t) < —2[2? —z129 + 23]
Wa,t) < —[af+a3) - [2] — 2122 + 23]
W(,t) < —[af+ a3 — (21 — )’
W(z,t) < —a2—a3

It follows that W(m,t) 15 negative definite and the origin is globally asymp-

totically stable.
0



4 Perturbation Analysis

In practice, a model can “approximate” a true system. The difference is
referred to as uncertainty. Consider a dynamical system of the form

i = f(e.t) + gla,1) (14)

g(z,t): perturbation term used to represent uncertainty .

Question: Suppose that & = f(z,t) has an asymptotically stable equilibrium
point; what can be said about & = f(x,t) + g(z,t)?

Theorem 5 : Let © = 0 be an equilibrium point of the system (14) and assume
that there exist W(-,-) : D x [0,00) — R such that

(i) kullz|® < Wz, t) < ksl
i) Gy + VW f(z,t) < —ksl]|.
(iii) [[VWI| < kal|]]
Then if the perturbation g(x,t) satisfies the bound
(i) [lg(2, )| < ksllell, (ks — kaks) >0
the origin is exponentially stable (globally if the assumptions hold globally).
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Proof: By (i) W(x,t) is positive definite and decrescent, with aq(||z|) =
killz||* and as(||z||) = k2||z]|?. Moreover, W (-, -) is radially unbounded. As-
sumption (ii) implies that, W (z,t) is negative definite along the trajectories
of the system & = f(x,t) (i.e., ignoring g(x,t). Thus, (i) and (ii) imply that
x = 0 is uniformly asymptotically stable for the nominal system & = f(z,t).

We now find W (-,-) along the trajectories of the perturbed system (14).
We have

ow

Vo= t t
W i + VW f(z, 2+VWg(a:, )
< —ksllzll® < Rkl

= W < —(k3—]€4k‘5)“$”2 <0

since (k3 — kgks) > 0 by assumption. The result then follows by Theorems
2-3 (along with Theorem 4). O
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5 Discrete-Time Systems
Consider a discrete-time systems of the form

z(k+1) = f(z(k), k) (15)
where k € Zt,x(k) € R", and f: R" x Z — R".

6 Discretization

.................. » Zd B -

Figure 1: (a) Continuous-time system ¥; (b) discrete-time system 3.

Discrete-time systems Y4 : u(k) — x(k) may originate by “sampling” a
continuous-time system X : © — x. We use the scheme shown in the Figure:

o S:Sampler. Reads z(t) every T seconds; x(k) = x(kT).

o 3: the plant. Given u, ¥ : u — x determines z(¢) by solving

T = f(x,u).

e H:Hold device. Converts u(k) into u(t) (continuous-time)

u(t) = u(k) for kT <t < (k+1)T.

....... > H > K > S AN

Figure 2: Discrete-time system 3.
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|01 2 3T 4T 5T t

Figure 3: Action of the hold device H.

Finding >, is usually impossible. There are several methods to construct
approximate models. The simplest is the so-called Euler approximation. If
T is small, then
dr . r(t+ AT) —x(t) x(t+T)—x(t)

~
~

T At Ao AT T

x

Thus
&= f(z,u)

can be approximated by

(kT +7T) ~ x(kKT) + T flz(kT), u(kT)].
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7 Stability of Discrete-Time Systems

Consider a discrete-time systems of the form (15)

z(k+1) = f(z(k), k)

where k € Z* x(k) € R", and f : R" X Z — R", and consider the stability
of an equilibrium point z..

7.1 Definitions
We now restate stability definitions for discrete-time systems.

Definition 7 : The equilibrium point x = 0 of the system (15) is
« Stable at kg if given e > 0, 30 = (e, ko) > 0 :
|lzo]| <0 = Jlz(k)|| <e Vk>ky>0. (16)

« Uniformly stable at kqy if given any given € > 0, 30 = d(e) > 0 :
|lzol| <0 = Jlz(k)|| <e Vk>ky>0. (17)

« Convergent at kg if there exists 61 = 61(kg) > 0 :
|| <01 = klim z(k) = 0. (18)

o Uniformly convergent if for any given e > 0,IM = M (e1) such that
[zl <1 = [lz(k)| <& Vk=ko+ M.

« Asymptotically stable at kg if it s both stable and convergent.

. Uni{ormly asymptotically stable if it s both stable and uniformly conver-
gent.

« Unstable if it is not stable.

7.2 Discrete-Time Positive Definite Functions
Definition 8 : A function W : R" x Z™ — R is said to be

e Positive semidefinite in D C R" if
@) W(0,k)=0 Vk >0.
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i) W(z,k) >0 Va A0, x € D.
e Positive definite in D C R" if
@) W(0,k) =0 Vk >0, and
(i) 3 a time invariant positive definite function Vi(x) such that

Vi(z) < W(x,k) Yz €D Vk.

e« W(-,-) is said to be decrescent in D C R" if there exists a time-invariant
positive definite function Va(x) such that

Wz, k) < Va(x) Voe D, Vk.

e« W(-,-) is said to be radially unbounded if W(x, k) — oo as ||z|| — oo,
uniformly on k. This means that given M > 0, there exists N > 0 such
that

Wiz, k) > M
provided that ||x|| > N.
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7.3 Stability Theorems
Definition 9 : The rate of change, AW (x, k), of the function W (x, k) along the
solutions of the difference equations of the system (15) is defined by

AW (z, k) =W(z(k+1),k+1) — W(z, k).

Theorem 6 : (Lyapunov Stability Theorem for Discrete-Time Systems). If in a
neighborhood D of the equilibrium state x = 0 of the system (15) there ezists
a function W(-,+) : D x Z* — R such that

(i) Wz, k) is positive definite.

(i) The rate of change AW (x,k) along any solution of (15) is megative
semidefinite in D, then

the equilibrium state is stable. Moreover, if W (x, k) is also decrescent, then
the origin is uniformly stable.

Theorem 7 : (Lyapunov Uniform Asymptotic Stability for Discrete-Time Sys-
tems). If in a neighborhood D of the equilibrium state x = 0 there exists a
function W(-,-) : D x Z* — R such that

() Wz, k) is (a) positive definite, and (b) decrescent.
(i) The rate of change, AW (z, k) is negative definite in D, then

the equilibrium state is uniformly asymptotically stable.
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Example 7 : Consider the following discrete-time system:
ri(k+1) = x1(k) + x2(k) (19)
vk 4 1) = ard(k)+ %:@(k). (20)
To study the stability of the origin, we consider the (time-independent) Lya-
punov function candidate V(z) = 1a%(k) + 2x1(k)xo(k) + 423(k), which can

be easily seen to be positive definite. We need to find AV (z) = V(x(k+1))—
V(z(k)), we have

V@e(k+1) = ~a2(k+ 1)+ 221k + Daa(k + 1) + 422(k + 1)

2
= 2[R+ 2R + 2 (8) + o (B ad(R) + (R

+alaat(h) + 5oa(h)P

1
V(z(k)) = §$§ + 22129 + 475,
From here, after some trivial manipulations, we conclude that
3
AV(z)=V(z(k+1)) = V(x(k)) = —§x§ + 2ax] + 6axiry + 4ax®.

Therefore we have the following cases of interest:

e a < 0. In this case, AV (x) is negative definite in a neighborhood of the
origin, and the origin is locally asymptotically stable (uniformly, since
the system is autonomous).

e a=0. In this case AV(z) = V(z(k +1)) — V(z(k)) = =323 <0, and
thus the origin 1s stable.

O
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