
Chapter 4: Lyapunov Stability II:
Nonautonomous Systems

1 Definitions

Consider the non-autonomous system:

ẋ = f(x, t) f : D × R+ → Rn (1)

where f is locally Lipschitz in x and piecewise continuous in t on D× [0,∞).
x = 0 ∈ D is an equilibrium point of (1) if

f(0, t) = 0 ∀t ≥ t0.

Definition 1 : x = 0 is said to be

• Stable at t0 if given ǫ > 0, ∃δ = δ(ǫ, t0) > 0 :

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ ∀t ≥ t0 > 0 (2)

• Convergent at t0 if there exists δ1 = δ1(t0) > 0 :

‖x(0)‖ < δ1 ⇒ lim
t→∞

x(t) = 0. (3)

Equivalently (and more precisely), x0 is convergent at t0 if for any given
ǫ1 > 0, ∃T = T (ǫ1, t0) such that

‖x(0)‖ < δ1 ⇒ ‖x(t)‖ < ǫ1 ∀t ≥ t0 + T (4)

• Asymptotically stable at t0 if it is both stable and convergent.

• Unstable if it is not stable.

Notice the inclusion of the initial time t0. This dependence is not desirable
and motivates the several notions of uniform stability.
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Definition 2 : The equilibrium point x = 0 of the system (1) is said to be

• Uniformly stable if any given ǫ > 0, ∃δ = δ(ǫ) > 0 :

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ ∀t ≥ t0 > 0 (5)

• Uniformly convergent if there is δ1 > 0, independent of t0, such that

‖x0‖ < δ1 ⇒ x(t) → 0 as t → ∞.

Equivalently, x = 0 is uniformly convergent if for any given ǫ1 > 0, ∃T =
T (ǫ1) such that

‖x(0)‖ < δ1 ⇒ ‖x(t)‖ < ǫ1 ∀t ≥ t0 + T

• Uniformly asymptotically stable if it is uniformly stable and uniformly
convergent.

• Globally uniformly asymptotically stable if it is uniformly asymptotically
stable and every motion converges to the origin.

2 Positive Definite Functions

In the following definitions we consider a function W : D × R+ → R. Fur-
thermore we assume that

(i) 0 ∈ D.

(ii) W (x, t) is continuous and has continuous partial derivatives with respect
to all of its arguments.

Definition 3 : W (·, ·) is said to be positive semi definite in D if

(i) W (0, t) = 0 ∀t ∈ R+

(ii) W (x, t) ≥ 0 ∀x 6 =0, x ∈ D
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Definition 4 : W (·, ·) is said to be positive definite in D if

(i) W (0, t) = 0 ∀t ∈ R+

(ii) ∃ a time-invariant positive definite function V1(x) such that

V1(x) ≤ W (x, t) ∀x ∈ D. (6)

Definition 5 : W (·, ·) is said to be decrescent in D if there exists a positive
definite function V2(x) such that

|W (x, t)| ≤ V2(x) ∀x ∈ D. (7)

(⇒ every time-invariant positive definite function is decrescent.)

Definition 6 : W (·, ·) is radially unbounded if

W (x, t) → ∞ as ‖x‖ → ∞

uniformly on t. Equivalently, W (·, ·) is radially unbounded if given M, ∃N >

0 such that
W (x, t) > M

for all t, provided that ‖x‖ > N .

Remarks: Consider now function W (x, t). By Definition 6, W (·, ·) is positive
definite in D if and only if ∃V1(x) such that

V1(x) ≤ W (x, t) , ∀x ∈ D (8)

this implies the existence of a class κ function α1(·) such that

α1(‖x‖) ≤ V1(x) ≤ W (x, t) , ∀x ∈ Br ⊂ D. (9)

If in addition W (·, ·) is decrescent, then, according to Definition (7) there
exists V2:

W (x, t) ≤ V2(x) , ∀x ∈ D (10)

this implies the existence of a class κ function α2(·) such that

W (x, t) ≤ V2(x) ≤ α2(‖x‖) , ∀x ∈ Br ⊂ D. (11)

It follows that W (·, ·) is positive definite and decrescent if and only if there
exist positive definite functions V1(·) and V2(·), such that

V1(x) ≤ W (x, t) ≤ V2(x) , ∀x ∈ D (12)

3



which in turn implies the existence of α1(·) and α2(·) ∈ K such that

α1(‖x‖) ≤ W (x, t) ≤ α2(‖x‖) , ∀x ∈ Br ⊂ D. (13)

Finally, W (·, ·) is positive definite, decrescent and radially unbounded if and
only if α1(·) and α2(·) can be chosen in the class K∞.
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2.1 Examples

Let x = [x1, x2]
T and study several functions W (x, t).

Example 1 : Let W1(x, t) = (x2
1 + x2

2)e
−αt α > 0. We have:

(i) W1(0, t) = 0 e−αt = 0 .

(ii) W1(x, t) > 0 ∀x 6 =0, ∀t ∈ R.

However, lim
t→∞

W1(x, t) = 0 ∀x. Thus, W1(·, ·) is positive semi definite, but

not positive definite. 2

Example 2 : Let

W2(x, t) =
(x2

1 + x2
2)(t

2 + 1)

(x2
1 + 2)

= V2(x)(t2 + 1), V2(x) ,
(x2

1 + x2
2)

(x2
1 + 2)

.

Thus, W2(x, t) ≥ V2(x) > 0 ∀x ∈ R2 and W2(·, ·) positive definite. Also

lim
t→∞

W2(x, t) = ∞ ∀x ∈ R2.

Thus we cannot find a positive definite function V (·) such that |W2(x, t)| ≤
V (x) ∀x. Thus W2(x, t) is not decrescent. |W2(x, t)| is not radially unbounded
since W2(x, t) → ∞ as x1 → ∞. 2

Example 3 : Let

W3(x, t) = (x2
1 + x2

2)(t
2 + 1)

W3(x) is positive definite, radially unbounded and not decrescent. 2

Example 4 : Let

W4(x, t) =
(x2

1 + x2
2)

(x2
1 + 1)

.

Thus, W4(·, ·) > 0∀x ∈ R2 and is positive definite. It is not time-dependent,
and so it is decrescent. It is not radially unbounded. 2

Example 5 Let

W5(x, t) =
(x2

1 + x2
2)(t

2 + 1)

(t2 + 2)

= V5(x)
(t2 + 1)

(t2 + 2)
, V5(x) , (x2

1 + x2
2).
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Thus, W5(x, t) ≥ k1V5(x) for some constant k1, which implies that W5(·, ·) is
positive definite. It is decrescent since

|W5(x, t)| ≤ k2V5(x) ∀x ∈

It is also radially unbounded since

W5(x, t) → ∞ as ‖x‖ → ∞.
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3 Stability Theorems

Consider the system (1) and assume that x = 0 is an equilibrium state of:

f(0, t) = 0 ∀t ∈ .

In the following theorems, we assume that W (·, ·) has continuous partial
derivatives in all of its arguments.

Theorem 1 : (Stability Theorem) If in a neighborhood D of x = 0 there exists
W (·, ·) : D × [0,∞) → R such that

(i) W (x, t) is positive definite.

(ii) The derivative of W (·, ·) along any solution of (1) is negative semi definite
in D, then

the equilibrium state is stable. If W (x, t) is also decrescent then the origin is
uniformly stable.

Theorem 2 : (Uniform Asymptotic Stability) If in a neighborhood D of the
equilibrium state x = 0 there exists W (·, ·) : D × [0,∞) → R such that

(i) W (x, t) is (a) positive definite, and (b) decrescent, and

(ii) The derivative of Ẇ (x, t) is negative definite in D, then

the equilibrium state is uniformly asymptotically stable.

The assumptions in Theorem 2 mean that:

(i) V1(x) ≤ W (x, t) ≤ V2(x) ∀x ∈ D, ∀t

(ii)
∂W
∂t

+ ∇Wf(x, t) ≤ −V3(x) ∀x ∈ D, ∀t

where Vi, i = 1, 2, 3 are positive definite functions in D.
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Theorem 3 : (Global Uniform Asymptotic Stability) If there exists W (·, ·) :
Rn × [0,∞) → R such that

(i) W (x, t) is (a) positive definite, and (b) decrescent, and radially unbounded
∀x ∈ Rn, and such that

(ii) The derivative of Ẇ (x, t) is negative definite ∀x ∈ Rn, then

the equilibrium state at x = 0 is globally uniformly asymptotically stable.

Theorem 4 : Suppose that all the conditions of Theorem 2 are satisfied, and in
addition assume that there exist positive constants K1, K2, and K3 such that

K1‖x‖
p ≤ W (x, t) ≤ K2‖x‖

p

Ẇ (x) ≤ −K3‖x‖
p.

Then the origin is exponentially stable. Moreover, if the conditions hold glob-
ally, the x = 0 is globally exponentially stable.
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Example 6 : Consider the following system:
{

ẋ1 = −x1 − e−2tx2 = f1

ẋ2 = x1 − x2. = f2

To study the stability of x = 0, let

W (x, t) = x2
1 + (1 + e−2t)x2

2.

Clearly

V1(x) = (x2
1 + x2

2) ≤ W (x, t) ≤ (x2
1 + 2x2

2) = V2(x)

thus, we have that

• W (x, t) is positive definite, since V1(x) ≤ W (x, t), with V1 positive defi-
nite in R2.

• W (x, t) is decrescent, since W (x, t) ≥ V2(x), with V2 also positive definite
in R2.

Then

Ẇ (x, t) =
∂W

∂x
f(x, t) +

∂W

∂t
= −2[x2

1 − x1x2 + x2
2(1 + 2e−2t)]

Ẇ (x, t) ≤ −2[x2
1 − x1x2 + x2

2].

Ẇ (x, t) ≤ −[x2
1 + x2

2] − [x2
1 − x1x2 + x2

2]

Ẇ (x, t) ≤ −[x2
1 + x2

2] − (x1 − x2)
2

Ẇ (x, t) ≤ −x2
1 − x2

2

It follows that Ẇ (x, t) is negative definite and the origin is globally asymp-
totically stable.

2
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4 Perturbation Analysis

In practice, a model can “approximate” a true system. The difference is
referred to as uncertainty. Consider a dynamical system of the form

ẋ = f(x, t) + g(x, t) (14)

g(x, t): perturbation term used to represent uncertainty .

Question: Suppose that ẋ = f(x, t) has an asymptotically stable equilibrium
point; what can be said about ẋ = f(x, t) + g(x, t)?

Theorem 5 : Let x = 0 be an equilibrium point of the system (14) and assume
that there exist W (·, ·) : D × [0,∞) → R such that

(i) k1‖x‖
2 ≤ W (x, t) ≤ k2‖x‖

2.

(ii)
∂W
∂t

+ ∇Wf(x, t) ≤ −k3‖x‖
2.

(iii) ‖∇W‖ ≤ k4‖x‖.

Then if the perturbation g(x, t) satisfies the bound

(iv) ‖g(x, t)‖ ≤ k5‖x‖, (k3 − k4k5) > 0

the origin is exponentially stable (globally if the assumptions hold globally).
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Proof : By (i) W (x, t) is positive definite and decrescent, with α1(‖x‖) =
k1‖x‖

2 and α2(‖x‖) = k2‖x‖
2. Moreover, W (·, ·) is radially unbounded. As-

sumption (ii) implies that, Ẇ (x, t) is negative definite along the trajectories
of the system ẋ = f(x, t) (i.e., ignoring g(x, t). Thus, (i) and (ii) imply that
x = 0 is uniformly asymptotically stable for the nominal system ẋ = f(x, t).

We now find Ẇ (·, ·) along the trajectories of the perturbed system (14).
We have

Ẇ =
∂W

∂t
+ ∇Wf(x, t)

︸ ︷︷ ︸

+∇Wg(x, t)
︸ ︷︷ ︸

≤ −k3‖x‖
2 ≤ k4k5‖x‖

2

⇒ Ẇ ≤ −(k3 − k4k5)‖x‖
2 < 0

since (k3 − k4k5) > 0 by assumption. The result then follows by Theorems
2–3 (along with Theorem 4). 2
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5 Discrete-Time Systems

Consider a discrete-time systems of the form

x(k + 1) = f(x(k), k) (15)

where k ∈ Z+, x(k) ∈ Rn, and f : Rn × Z → Rn.

6 Discretization

- Σ -u(t) x(t)(a)

(b) p p p p p p p p p p p p p p p p p p p p- Σd
p p p p p p p p p p p p p p p p p p p p-u(k) x(k)

Figure 1: (a) Continuous-time system Σ; (b) discrete-time system Σd.

Discrete-time systems Σd : u(k) → x(k) may originate by “sampling” a
continuous-time system Σ : u → x. We use the scheme shown in the Figure:

• S:Sampler. Reads x(t) every T seconds; x(k) = x(kT ).

• Σ: the plant. Given u, Σ : u → x determines x(t) by solving

ẋ = f(x, u).

• H:Hold device. Converts u(k) into u(t) (continuous-time)

u(t) = u(k) for kT ≤ t < (k + 1)T.

- S p p p p p p p p p p-Kpppppppppp - H
x(t) x(k)u(k) u(t)-

Figure 2: Discrete-time system Σd.
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Figure 3: Action of the hold device H.

Finding Σd is usually impossible. There are several methods to construct
approximate models. The simplest is the so-called Euler approximation. If
T is small, then

ẋ =
dx

dt
= lim

∆T→0

x(t + ∆T ) − x(t)

∆T
≈

x(t + T ) − x(t)

T
.

Thus
ẋ = f(x, u)

can be approximated by

x(kT + T ) ≈ x(kT ) + Tf [x(kT ), u(kT )].
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7 Stability of Discrete-Time Systems

Consider a discrete-time systems of the form (15)

x(k + 1) = f(x(k), k)

where k ∈ Z+, x(k) ∈ Rn, and f : Rn × Z → Rn, and consider the stability
of an equilibrium point xe.

7.1 Definitions

We now restate stability definitions for discrete-time systems.

Definition 7 : The equilibrium point x = 0 of the system (15) is

• Stable at k0 if given ǫ > 0, ∃δ = δ(ǫ, k0) > 0 :

‖x0‖ < δ ⇒ ‖x(k)‖ < ǫ ∀k ≥ k0 > 0. (16)

• Uniformly stable at k0 if given any given ǫ > 0, ∃δ = δ(ǫ) > 0 :

‖x0‖ < δ ⇒ ‖x(k)‖ < ǫ ∀k ≥ k0 > 0. (17)

• Convergent at k0 if there exists δ1 = δ1(k0) > 0 :

‖x0‖ < δ1 ⇒ lim
k→∞

x(k) = 0. (18)

• Uniformly convergent if for any given ǫ1 > 0, ∃M = M(ǫ1) such that

‖x0‖ < δ1 ⇒ ‖x(k)‖ < ǫ1 ∀k ≥ k0 + M.

• Asymptotically stable at k0 if it is both stable and convergent.

• Uniformly asymptotically stable if it is both stable and uniformly conver-
gent.

• Unstable if it is not stable.

7.2 Discrete-Time Positive Definite Functions

Definition 8 : A function W : Rn × Z+ → R is said to be

• Positive semidefinite in D ⊂ Rn if

(i) W (0, k) = 0 ∀k ≥ 0.
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(ii) W (x, k) ≥ 0 ∀x 6 =0, x ∈ D.

• Positive definite in D ⊂ Rn if

(i) W (0, k) = 0 ∀k ≥ 0, and

(ii) ∃ a time invariant positive definite function V1(x) such that

V1(x) ≤ W (x, k) ∀x ∈ D ∀k.

• W (·, ·) is said to be decrescent in D ⊂ Rn if there exists a time-invariant
positive definite function V2(x) such that

W (x, k) ≤ V2(x) ∀x ∈ D, ∀k.

• W (·, ·) is said to be radially unbounded if W (x, k) → ∞ as ‖x‖ → ∞,
uniformly on k. This means that given M > 0, there exists N > 0 such
that

W (x, k) > M

provided that ‖x‖ > N .
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7.3 Stability Theorems

Definition 9 : The rate of change, ∆W (x, k), of the function W (x, k) along the
solutions of the difference equations of the system (15) is defined by

∆W (x, k) = W (x(k + 1), k + 1) − W (x, k).

Theorem 6 : (Lyapunov Stability Theorem for Discrete-Time Systems). If in a
neighborhood D of the equilibrium state x = 0 of the system (15) there exists
a function W (·, ·) : D × Z+ → R such that

(i) W (x, k) is positive definite.

(ii) The rate of change ∆W (x, k) along any solution of (15) is negative
semidefinite in D, then

the equilibrium state is stable. Moreover, if W (x, k) is also decrescent, then
the origin is uniformly stable.

Theorem 7 : (Lyapunov Uniform Asymptotic Stability for Discrete-Time Sys-
tems). If in a neighborhood D of the equilibrium state x = 0 there exists a
function W (·, ·) : D × Z+ → R such that

(i) W (x, k) is (a) positive definite, and (b) decrescent.

(ii) The rate of change, ∆W (x, k) is negative definite in D, then

the equilibrium state is uniformly asymptotically stable.
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Example 7 : Consider the following discrete-time system:

x1(k + 1) = x1(k) + x2(k) (19)

x2(k + 1) = ax3
1(k) +

1

2
x2(k). (20)

To study the stability of the origin, we consider the (time-independent) Lya-
punov function candidate V (x) = 1

2x
2
1(k) + 2x1(k)x2(k) + 4x2

2(k), which can
be easily seen to be positive definite. We need to find ∆V (x) = V (x(k +1))−
V (x(k)), we have

V (x(k + 1)) =
1

2
x2

1(k + 1) + 2x1(k + 1)x2(k + 1) + 4x2
2(k + 1)

=
1

2
[x1(k) + x2(k)]2 + 2[x1(k) + x2(k)][ax3

1(k) +
1

2
x2(k)]

+4[ax3
1(k) +

1

2
x2(k)]2

V (x(k)) =
1

2
x2

2 + 2x1x2 + 4x2
2.

From here, after some trivial manipulations, we conclude that

∆V (x) = V (x(k + 1)) − V (x(k)) = −
3

2
x2

2 + 2ax4
1 + 6ax3

1x2 + 4a2x6
1.

Therefore we have the following cases of interest:

• a < 0. In this case, ∆V (x) is negative definite in a neighborhood of the
origin, and the origin is locally asymptotically stable (uniformly, since
the system is autonomous).

• a = 0. In this case ∆V (x) = V (x(k + 1)) − V (x(k)) = −3
2x

2
2 ≤ 0, and

thus the origin is stable.

2
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