Chapter 4: Lyapunov Stability II: Nonautonomous Systems

1 Definitions

Consider the non-autonomous system:

$$\dot{x} = f(x,t)$$
 $f: D \times R^+ \to R^n$ (1)

where f is locally Lipschitz in x and piecewise continuous in t on $D \times [0, \infty)$. $x = 0 \in D$ is an equilibrium point of (1) if

$$f(0,t) = 0 \qquad \forall t \ge t_0.$$

Definition 1 : x = 0 is said to be

• Stable at t_0 if given $\epsilon > 0$, $\exists \delta = \delta(\epsilon, t_0) > 0$:

$$||x(0)|| < \delta \implies ||x(t)|| < \epsilon \quad \forall t \ge t_0 > 0$$
⁽²⁾

• Convergent at t_0 if there exists $\delta_1 = \delta_1(t_0) > 0$:

$$\|x(0)\| < \delta_1 \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0. \tag{3}$$

Equivalently (and more precisely), x_0 is convergent at t_0 if for any given $\epsilon_1 > 0, \exists T = T(\epsilon_1, t_0)$ such that

$$\|x(0)\| < \delta_1 \quad \Rightarrow \quad \|x(t)\| < \epsilon_1 \quad \forall t \ge t_0 + T \tag{4}$$

- Asymptotically stable at t_0 if it is both stable and convergent.
- Unstable *if it is not stable*.

Notice the inclusion of the initial time t_0 . This dependence is not desirable and motivates the several notions of <u>uniform</u> stability.

Definition 2: The equilibrium point x = 0 of the system (1) is said to be

• Uniformly stable if any given $\epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$:

$$||x(0)|| < \delta \implies ||x(t)|| < \epsilon \quad \forall t \ge t_0 > 0 \tag{5}$$

• Uniformly convergent if there is $\delta_1 > 0$, independent of t_0 , such that

 $||x_0|| < \delta_1 \quad \Rightarrow \quad x(t) \to 0 \quad as \quad t \to \infty.$

Equivalently, x = 0 is uniformly convergent if for any given $\epsilon_1 > 0, \exists T = T(\epsilon_1)$ such that

 $||x(0)|| < \delta_1 \quad \Rightarrow \quad ||x(t)|| < \epsilon_1 \quad \forall t \ge t_0 + T$

- Uniformly asymptotically stable *if it is uniformly stable and uniformly convergent.*
- Globally uniformly asymptotically stable *if it is uniformly asymptotically stable and every motion converges to the origin.*

2 Positive Definite Functions

In the following definitions we consider a function $W: D \times R^+ \to R$. Furthermore we assume that

- (i) $0 \in D$.
- (ii) W(x,t) is continuous and has continuous partial derivatives with respect to all of its arguments.

Definition 3 : $W(\cdot, \cdot)$ is said to be positive semi definite in D if

- (i) W(0,t) = 0 $\forall t \in R^+$
- $\textit{(ii) } W(x,t) \ge 0 \qquad \forall x \not\models 0, x \in D$

Definition 4 : $W(\cdot, \cdot)$ is said to be positive definite in D if

- (i) W(0,t) = 0 $\forall t \in R^+$
- (ii) \exists a time-invariant positive definite function $V_1(x)$ such that

$$V_1(x) \leq W(x,t) \quad \forall x \in D.$$
 (6)

Definition 5: $W(\cdot, \cdot)$ is said to be decrescent in D if there exists a positive definite function $V_2(x)$ such that

$$|W(x,t)| \le V_2(x) \qquad \forall x \in D.$$
(7)

 $(\Rightarrow$ every time-invariant positive definite function is decrescent.)

Definition 6 : $W(\cdot, \cdot)$ is radially unbounded if

 $W(x,t) \to \infty$ as $||x|| \to \infty$

uniformly on t. Equivalently, $W(\cdot, \cdot)$ is radially unbounded if given $M, \exists N > 0$ such that

W(x,t) > M

for all t, provided that ||x|| > N.

Remarks: Consider now function W(x, t). By Definition 6, $W(\cdot, \cdot)$ is positive definite in D if and only if $\exists V_1(x)$ such that

$$V_1(x) \leq W(x,t), \quad \forall x \in D$$
 (8)

this implies the existence of a class κ function $\alpha_1(\cdot)$ such that

$$\alpha_1(\|x\|) \leq V_1(x) \leq W(x,t), \quad \forall x \in B_r \subset D.$$
(9)

If in addition $W(\cdot, \cdot)$ is decreasent, then, according to Definition (7) there exists V_2 :

$$W(x,t) \le V_2(x) , \quad \forall x \in D$$
 (10)

this implies the existence of a class κ function $\alpha_2(\cdot)$ such that

$$W(x,t) \le V_2(x) \le \alpha_2(\|x\|) , \quad \forall x \in B_r \subset D.$$
(11)

It follows that $W(\cdot, \cdot)$ is positive definite and decreasent if and only if there exist positive definite functions $V_1(\cdot)$ and $V_2(\cdot)$, such that

$$V_1(x) \leq W(x,t) \leq V_2(x), \quad \forall x \in D$$
(12)

which in turn implies the existence of $\alpha_1(\cdot)$ and $\alpha_2(\cdot) \in \mathcal{K}$ such that

$$\alpha_1(\|x\|) \leq W(x,t) \leq \alpha_2(\|x\|), \quad \forall x \in B_r \subset D.$$
(13)

Finally, $W(\cdot, \cdot)$ is positive definite, decrescent and radially unbounded if and only if $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ can be chosen in the class \mathcal{K}_{∞} .

2.1 Examples

Let $x = [x_1, x_2]^T$ and study several functions W(x, t). Example 1 : Let $W_1(x, t) = (x_1^2 + x_2^2)e^{-\alpha t}$ $\alpha > 0$. We have: (i) $W_1(0, t) = 0 \ e^{-\alpha t} = 0$.

(ii) $W_1(x,t) > 0 \quad \forall x \neq 0, \quad \forall t \in R.$

However, $\lim_{t\to\infty} W_1(x,t) = 0 \quad \forall x.$ Thus, $W_1(\cdot, \cdot)$ is positive semi definite, but not positive definite. \Box

Example 2 : Let

$$W_2(x,t) = \frac{(x_1^2 + x_2^2)(t^2 + 1)}{(x_1^2 + 2)}$$

= $V_2(x)(t^2 + 1), \qquad V_2(x) \triangleq \frac{(x_1^2 + x_2^2)}{(x_1^2 + 2)}.$

Thus, $W_2(x,t) \ge V_2(x) > 0 \ \forall x \in \mathbb{R}^2$ and $W_2(\cdot, \cdot)$ positive definite. Also

$$\lim_{t \to \infty} W_2(x,t) = \infty \quad \forall x \in \mathbb{R}^2.$$

Thus we cannot find a positive definite function $V(\cdot)$ such that $|W_2(x,t)| \leq V(x) \forall x$. Thus $W_2(x,t)$ is not decrescent. $|W_2(x,t)|$ is not radially unbounded since $W_2(x,t) \to \infty$ as $x_1 \to \infty$. \Box

Example 3 : Let

$$W_3(x,t) = (x_1^2 + x_2^2)(t^2 + 1)$$

 $W_3(x)$ is positive definite, radially unbounded and not decreasent. \Box

Example 4 : Let

$$W_4(x,t) = \frac{(x_1^2 + x_2^2)}{(x_1^2 + 1)}$$

Thus, $W_4(\cdot, \cdot) > 0 \forall x \in \mathbb{R}^2$ and is positive definite. It is not time-dependent, and so it is decreasent. It is not radially unbounded. \Box

Example 5 Let

$$W_5(x,t) = \frac{(x_1^2 + x_2^2)(t^2 + 1)}{(t^2 + 2)}$$

= $V_5(x)\frac{(t^2 + 1)}{(t^2 + 2)}, \qquad V_5(x) \triangleq (x_1^2 + x_2^2)$

Thus, $W_5(x,t) \ge k_1 V_5(x)$ for some constant k_1 , which implies that $W_5(\cdot, \cdot)$ is positive definite. It is decreased since

$$|W_5(x,t)| \le k_2 V_5(x) \; \forall x \in$$

It is also radially unbounded since

$$W_5(x,t) \to \infty \quad as \quad ||x|| \to \infty.$$

3 Stability Theorems

Consider the system (1) and assume that x = 0 is an equilibrium state of:

$$f(0,t) = 0 \qquad \forall t \in .$$

In the following theorems, we assume that $W(\cdot, \cdot)$ has continuous partial derivatives in all of its arguments.

Theorem 1 : (Stability Theorem) If in a neighborhood D of x = 0 there exists $W(\cdot, \cdot) : D \times [0, \infty) \to R$ such that

- (i) W(x,t) is positive definite.
- (ii) The derivative of $W(\cdot, \cdot)$ along any solution of (1) is negative semi definite in D, then

the equilibrium state is stable. If W(x,t) is also decreasent then the origin is uniformly stable.

Theorem 2: (Uniform Asymptotic Stability) If in a neighborhood D of the equilibrium state x = 0 there exists $W(\cdot, \cdot) : D \times [0, \infty) \to R$ such that

- (i) W(x,t) is (a) positive definite, and (b) decrescent, and
- (ii) The derivative of $\dot{W}(x,t)$ is negative definite in D, then

the equilibrium state is uniformly asymptotically stable.

The assumptions in Theorem 2 mean that:

- (i) $V_1(x) \le W(x,t) \le V_2(x) \quad \forall x \in D, \forall t$
- (ii) $\frac{\partial W}{\partial t} + \nabla W f(x, t) \leq -V_3(x) \quad \forall x \in D, \forall t$

where V_i , i = 1, 2, 3 are positive definite functions in D.

Theorem 3: (Global Uniform Asymptotic Stability) If there exists $W(\cdot, \cdot)$: $R^n \times [0, \infty) \to R$ such that

- (i) W(x,t) is (a) positive definite, and (b) decreasent, and radially unbounded $\forall x \in \mathbb{R}^n$, and such that
- (ii) The derivative of W(x,t) is negative definite $\forall x \in \mathbb{R}^n$, then

the equilibrium state at x = 0 is globally uniformly asymptotically stable.

Theorem 4 : Suppose that all the conditions of Theorem 2 are satisfied, and in addition assume that there exist positive constants K_1, K_2 , and K_3 such that

$$\begin{array}{rcccccc} K_1 \|x\|^p & \leq & W(x,t) & \leq & K_2 \|x\|^p \\ \dot{W}(x) & \leq & -K_3 \|x\|^p. \end{array}$$

Then the origin is exponentially stable. Moreover, if the conditions hold globally, the x = 0 is globally exponentially stable.

Example 6 : Consider the following system:

$$\begin{cases} \dot{x}_1 = -x_1 - e^{-2t}x_2 = f_1 \\ \dot{x}_2 = x_1 - x_2. = f_2 \end{cases}$$

To study the stability of x = 0, let

$$W(x,t) = x_1^2 + (1 + e^{-2t})x_2^2.$$

Clearly

$$V_1(x) = (x_1^2 + x_2^2) \le W(x, t) \le (x_1^2 + 2x_2^2) = V_2(x)$$

thus, we have that

- W(x,t) is positive definite, since $V_1(x) \leq W(x,t)$, with V_1 positive definite in \mathbb{R}^2 .
- W(x,t) is decreasent, since $W(x,t) \ge V_2(x)$, with V_2 also positive definite in \mathbb{R}^2 .

Then

$$\begin{split} \dot{W}(x,t) &= \frac{\partial W}{\partial x} f(x,t) + \frac{\partial W}{\partial t} \\ &= -2[x_1^2 - x_1 x_2 + x_2^2(1+2e^{-2t})] \\ \dot{W}(x,t) &\leq -2[x_1^2 - x_1 x_2 + x_2^2]. \\ \dot{W}(x,t) &\leq -[x_1^2 + x_2^2] - [x_1^2 - x_1 x_2 + x_2^2] \\ \dot{W}(x,t) &\leq -[x_1^2 + x_2^2] - (x_1 - x_2)^2 \\ \dot{W}(x,t) &\leq -x_1^2 - x_2^2 \end{split}$$

It follows that W(x,t) is negative definite and the origin is globally asymptotically stable.

4 Perturbation Analysis

In practice, a model can "approximate" a true system. The difference is referred to as *uncertainty*. Consider a dynamical system of the form

$$\dot{x} = f(x,t) + g(x,t) \tag{14}$$

g(x,t): perturbation term used to represent uncertainty.

Question: Suppose that $\dot{x} = f(x, t)$ has an asymptotically stable equilibrium point; what can be said about $\dot{x} = f(x, t) + g(x, t)$?

Theorem 5: Let x = 0 be an equilibrium point of the system (14) and assume that there exist $W(\cdot, \cdot) : D \times [0, \infty) \to R$ such that

- (i) $k_1 ||x||^2 \le W(x, t) \le k_2 ||x||^2$.
- (ii) $\frac{\partial W}{\partial t} + \nabla W f(x, t) \le -k_3 \|x\|^2.$
- (*iii*) $\|\nabla W\| \le k_4 \|x\|$.

Then if the perturbation g(x,t) satisfies the bound

(iv) $||g(x,t)|| \le k_5 ||x||, (k_3 - k_4 k_5) > 0$

the origin is exponentially stable (globally if the assumptions hold globally).

Proof: By (i) W(x,t) is positive definite and decrescent, with $\alpha_1(||x||) = k_1||x||^2$ and $\alpha_2(||x||) = k_2||x||^2$. Moreover, $W(\cdot, \cdot)$ is radially unbounded. Assumption (ii) implies that, $\dot{W}(x,t)$ is negative definite along the trajectories of the system $\dot{x} = f(x,t)$ (i.e., ignoring g(x,t). Thus, (i) and (ii) imply that x = 0 is uniformly asymptotically stable for the nominal system $\dot{x} = f(x,t)$.

We now find $\dot{W}(\cdot, \cdot)$ along the trajectories of the perturbed system (14). We have

$$\dot{W} = \underbrace{\frac{\partial W}{\partial t} + \nabla W f(x,t)}_{\leq -k_3 \|x\|^2} + \underbrace{\nabla W g(x,t)}_{\leq k_4 k_5 \|x\|^2}$$
$$\Rightarrow \dot{W} \leq -(k_3 - k_4 k_5) \|x\|^2 < 0$$

since $(k_3 - k_4 k_5) > 0$ by assumption. The result then follows by Theorems 2–3 (along with Theorem 4).

5 Discrete-Time Systems

Consider a discrete-time systems of the form

$$x(k+1) = f(x(k), k)$$
(15)

where $k \in Z^+, x(k) \in \mathbb{R}^n$, and $f : \mathbb{R}^n \times Z \to \mathbb{R}^n$.

6 Discretization

Figure 1: (a) Continuous-time system Σ ; (b) discrete-time system Σ_d .

Discrete-time systems $\Sigma_d : u(k) \to x(k)$ may originate by "sampling" a continuous-time system $\Sigma : u \to x$. We use the scheme shown in the Figure:

- S:Sampler. Reads x(t) every T seconds; x(k) = x(kT).
- Σ : the plant. Given $u, \Sigma: u \to x$ determines x(t) by solving

 $\dot{x} = f(x, u).$

• *H*:*Hold* device. Converts u(k) into u(t) (continuous-time)

$$u(t) = u(k)$$
 for $kT \le t < (k+1)T$.

Figure 3: Action of the hold device H.

Finding Σ_d is usually impossible. There are several methods to construct approximate models. The simplest is the so-called Euler approximation. If T is small, then

$$\dot{x} = \frac{dx}{dt} = \lim_{\Delta T \to 0} \frac{x(t + \Delta T) - x(t)}{\Delta T} \approx \frac{x(t + T) - x(t)}{T}.$$

Thus

$$\dot{x} = f(x, u)$$

can be approximated by

$$x(kT+T) \approx x(kT) + Tf[x(kT), u(kT)]$$

7 Stability of Discrete-Time Systems

Consider a *discrete-time systems* of the form (15)

$$x(k+1) = f(x(k), k)$$

where $k \in Z^+, x(k) \in \mathbb{R}^n$, and $f : \mathbb{R}^n \times Z \to \mathbb{R}^n$, and consider the stability of an equilibrium point x_e .

7.1 Definitions

We now restate stability definitions for discrete-time systems.

Definition 7: The equilibrium point x = 0 of the system (15) is

- Stable at k_0 if given $\epsilon > 0$, $\exists \delta = \delta(\epsilon, k_0) > 0$: $\|x_0\| < \delta \implies \|x(k)\| < \epsilon \quad \forall k \ge k_0 > 0.$ (16)
- Uniformly stable at k_0 if given any given $\epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$:

 $||x_0|| < \delta \implies ||x(k)|| < \epsilon \quad \forall k \ge k_0 > 0.$ (17)

• Convergent at k_0 if there exists $\delta_1 = \delta_1(k_0) > 0$:

$$||x_0|| < \delta_1 \quad \Rightarrow \quad \lim_{k \to \infty} x(k) = 0. \tag{18}$$

• Uniformly convergent if for any given $\epsilon_1 > 0, \exists M = M(\epsilon_1)$ such that

 $||x_0|| < \delta_1 \quad \Rightarrow \quad ||x(k)|| < \epsilon_1 \quad \forall k \ge k_0 + M.$

- Asymptotically stable at k_0 if it is both stable and convergent.
- Uniformly asymptotically stable *if it is both stable and uniformly convergent.*
- Unstable *if it is not stable*.

7.2 Discrete-Time Positive Definite Functions

Definition 8 : A function $W : \mathbb{R}^n \times \mathbb{Z}^+ \to \mathbb{R}$ is said to be

- Positive semidefinite in $D \subset \mathbb{R}^n$ if
 - (i) $W(0,k) = 0 \quad \forall k \ge 0.$

(ii) $W(x,k) \ge 0 \quad \forall x \neq 0, x \in D.$

- Positive definite in $D \subset \mathbb{R}^n$ if
 - (i) $W(0,k) = 0 \quad \forall k \ge 0, and$

(ii) \exists a time invariant positive definite function $V_1(x)$ such that

 $V_1(x) \le W(x,k) \quad \forall x \in D \ \forall k.$

• $W(\cdot, \cdot)$ is said to be decrescent in $D \subset \mathbb{R}^n$ if there exists a time-invariant positive definite function $V_2(x)$ such that

$$W(x,k) \leq V_2(x) \quad \forall x \in D, \ \forall k.$$

• $W(\cdot, \cdot)$ is said to be radially unbounded if $W(x, k) \to \infty$ as $||x|| \to \infty$, uniformly on k. This means that given M > 0, there exists N > 0 such that

$$W(x,k) > M$$

provided that ||x|| > N.

7.3 Stability Theorems

Definition 9: The rate of change, $\Delta W(x,k)$, of the function W(x,k) along the solutions of the difference equations of the system (15) is defined by

$$\Delta W(x,k) = W(x(k+1), k+1) - W(x,k).$$

Theorem 6 : (Lyapunov Stability Theorem for Discrete-Time Systems). If in a neighborhood D of the equilibrium state x = 0 of the system (15) there exists a function $W(\cdot, \cdot) : D \times Z^+ \to R$ such that

- (i) W(x,k) is positive definite.
- (ii) The rate of change $\Delta W(x,k)$ along any solution of (15) is negative semidefinite in D, then

the equilibrium state is stable. Moreover, if W(x, k) is also decrescent, then the origin is uniformly stable.

Theorem 7: (Lyapunov Uniform Asymptotic Stability for Discrete-Time Systems). If in a neighborhood D of the equilibrium state x = 0 there exists a function $W(\cdot, \cdot) : D \times Z^+ \to R$ such that

- (i) W(x,k) is (a) positive definite, and (b) decreasent.
- (ii) The rate of change, $\Delta W(x,k)$ is negative definite in D, then

the equilibrium state is uniformly asymptotically stable.

Example 7 : Consider the following discrete-time system:

$$x_1(k+1) = x_1(k) + x_2(k) \tag{19}$$

$$x_2(k+1) = ax_1^3(k) + \frac{1}{2}x_2(k).$$
 (20)

To study the stability of the origin, we consider the (time-independent) Lyapunov function candidate $V(x) = \frac{1}{2}x_1^2(k) + 2x_1(k)x_2(k) + 4x_2^2(k)$, which can be easily seen to be positive definite. We need to find $\Delta V(x) = V(x(k+1)) - V(x(k))$, we have

$$V(x(k+1)) = \frac{1}{2}x_1^2(k+1) + 2x_1(k+1)x_2(k+1) + 4x_2^2(k+1)$$

= $\frac{1}{2}[x_1(k) + x_2(k)]^2 + 2[x_1(k) + x_2(k)][ax_1^3(k) + \frac{1}{2}x_2(k)]$
+ $4[ax_1^3(k) + \frac{1}{2}x_2(k)]^2$

$$V(x(k)) = \frac{1}{2}x_2^2 + 2x_1x_2 + 4x_2^2.$$

From here, after some trivial manipulations, we conclude that

$$\Delta V(x) = V(x(k+1)) - V(x(k)) = -\frac{3}{2}x_2^2 + 2ax_1^4 + 6ax_1^3x_2 + 4a^2x_1^6.$$

Therefore we have the following cases of interest:

- a < 0. In this case, $\Delta V(x)$ is negative definite in a neighborhood of the origin, and the origin is locally asymptotically stable (uniformly, since the system is autonomous).
- a = 0. In this case $\Delta V(x) = V(x(k+1)) V(x(k)) = -\frac{3}{2}x_2^2 \le 0$, and thus the origin is stable.

1		-	
	-	-	-