
Chapter 5: Feedback Systems

Consider
ẋ = f(x, u), f(0, 0) = 0, (1)

assume that u is obtained using state feedback:

u = φ(x). (2)

The stability of the origin can be studied substituting (2) into (1):

ẋ = f(x, φ(x)). (3)

1 Basic Feedback Stabilization

Example 1 : Consider the system

ẋ = ax2 + u where ‘a’ is a non-zero constant (4)

we look for a state feedback of the form

u = φ(x)

that makes x = 0 “asymptotically stable.” Consider first setting

u = −ax2 − x (5)

Substituting (5) into (4) we obtain

ẋ = −x

which is linear and globally asymptotically stable, as desired. 2

Issues: this first solution has 2 problems

(i) It is based on the exact cancelation of the nonlinear term ax2, thus re-
quiring the exact knowledge of the system parameter(s).

(ii) Canceling “all” nonlinear terms simplifies the analysis but may not be a
good idea.
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Example 2 : Consider the system given by

ẋ = ax2 − x3 + u

following the approach in Example 1 we can set

u , u1 = −ax2 + x3 − x

which leads to
ẋ = −x.

2

u1 cancels the terms ax2 and −x3, which are quite different:

• The term in x2 is never desirable. It has a destabilizing effect.

• The term in −x3 provides “damping” for x and can be beneficial.

• Cancellation of the term x3 was achieved by incorporating the term x3

in the feedback law. Leads to very large input values.

Alternate solution: Given the system

ẋ = f(x, u) x ∈ Rn, u ∈ R, f(0, 0) = 0

we proceed to find a feedback law u = φ(x) such that

ẋ = f(x, φ(x)) (6)

and x = 0 is asymptotically stable. We look for
V1 = V1(x) : D → R satisfying

(i) V1(0) = 0, and V1(x) is positive definite in D − {0}.

(ii) There exist L(x) : D → R+ (positive definite) such that

V̇1(x) =
∂V1

∂x
f(x, φ(x)) ≤ −L(x) ∀x ∈ D.

Example 3 : Consider again the system of example 2.

ẋ = ax2 − x3 + u

defining V1(x) = 1
2x

2 and computing V̇1, we obtain

V̇1 = ax3 − x4 + xu.

In Example 2 we chose u = u1 = −ax2 + x3 − x. Thus

V̇1 = ax3 − x4 + x(−ax2 + x3 − x) = −x2 , −L(x).
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We now modify L(x) as follows:

V̇1 = ax3 − x4 + xu ≤ −L(x) , −(x4 + x2).

choose u as,
u = −x − ax2.

With this u, we obtain the following feedback system

ẋ = ax2 − x3 + u

= −x − x3

which is globally asymptotically stable. 2

2 Integrator Backstepping

We consider a system of the form

ẋ = f(x) + g(x)ξ, x ∈ Rn, ξ ∈ R (7)

ξ̇ = u. (8)

We will make the following assumptions (see Figure 5.1(a)):

(i) f(0) = 0.

(ii) Viewing the state variable ξ as an independent “input”, we assume that
there exists a state feedback control law that stabilizes the origin of the
subsystem (7)

ξ = φ(x), φ(0) = 0

and a Lyapunov function V1 : D → R+ such that

V̇1(x) =
∂V1

∂x
[f(x) + g(x) · φ(x)] ≤ −L(x) ≤ 0 ∀x ∈ D

where L(·) : D → R+ is a positive definite function in D.

To stabilize now the system (7)–(8) we proceed as follows:

• Adding and subtracting g(x)φ(x) to (7) (Figure 1(b)) we obtain the
equivalent system

ẋ = f(x) + g(x)φ(x) + g(x)[ξ − φ(x)] (9)

ξ̇ = u. (10)

3



• Define

z = ξ − φ(x) (11)

ż = ξ̇ − φ̇(x) = u − φ̇(x) (12)

where

φ̇ =
∂φ

∂x
ẋ =

∂φ

∂x
[f(x) + g(x)ξ] (13)

This change of variables can be seen as “backstepping” −φ(x) through
the integrator (Figure 1(c)). Defining

v = ż (14)

the resulting system is (Figure 1(d))

ẋ = f(x) + g(x)φ(x) + g(x)z (15)

ż = v (16)

V is defined as V = u − φ̇(x) and φ̇(x) calulated as (13)

Notice that (15)–(16) is equivalent to (7)–(8). To stabilize the system
(15)–(16) consider:

V = V (x, ξ) = V1(x) +
1

2
z2. (17)

⇒ V̇ =
∂V1

∂x
[f(x) + g(x)φ(x) + g(x)z] + zż

=
∂V1

∂x
f(x) +

∂V1

∂x
g(x)φ(x) +

∂V1

∂x
g(x)z + zv.

We can choose

v = −

(

∂V1

∂x
g(x) + kz

)

, k > 0 (18)

Thus

V̇ =
∂V1

∂x
f(x) +

∂V1

∂x
g(x)φ(x) − kz2

=
∂V1

∂x
[f(x) + g(x)φ(x)] − kz2

≤ −L(x) − kz2. (19)
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(19) implies that the origin x = 0, z = 0 is asymptotically stable. Since
z = ξ − φ(x) and φ(0) = 0, the origin of the original system x = 0, ξ = 0
is also asymptotically stable. The stabilizing state feedback law is given
by

u = ż + φ̇ (20)

u =
∂φ

∂x
[f(x) + g(x)ξ] −

∂V1

∂x
g(x) − k[ξ − φ(x)]. (21)
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Example 4 : Consider the following system:

ẋ1 = ax2
1 − x3

1 + x2 (22)

ẋ2 = u. (23)

Clearly this system is of the form (15)–(16) with

x = x1

ξ = x2

f(x) = f(x1) = ax2
1 − x3

1

g(x) = 1

Step 1: Find ξ = φ(x) to stabilize the origin x = 0. Defining

V1(x1) =
1

2
x2

1

⇒ V̇1(x1) = ax3
1 − x4

1 + x1x2 ≤ −Va(x1) , −(x4
1 + x2

1)

choosing
x2 = φ(x1) = −x1 − ax2

1

we obtain
ẋ1 = −x1 − x3

1.

Step 2: To stabilize (22)– (23), we use of the control law (21):

u =
∂φ

∂x
[f(x) + g(x)ξ] −

∂V1

∂x
g(x) − k[ξ − φ(x)]

= −(1 + 2ax1)[ax2
1 − x3

1 + x2] − x1 − k[x2 + x1 + ax2
1].

With this control law the origin is globally asymptotically stable. The com-
posite Lyapunov function is

V = V1 +
1

2
z2 =

1

2
x2

1 +
1

2
[x2 − φ(x1)]

2

=
1

2
x2

1 +
1

2
[x2 − x1 + ax2

1]
2.
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3 Chain of Integrators

Consider now a system of the form

ẋ = f(x) + g(x)ξ1

ξ̇1 = ξ2

...

ξ̇k−1 = ξk

ξ̇k = u

For simplicity we focus on the third order system

ẋ = f(x) + g(x)ξ1 (24)

ξ̇1 = ξ2 (25)

ξ̇2 = u (26)

To stabilize the origin we proceed as follows: we consider the first “subsys-
tem” (24). Assume that ξ1 = φ(x1) is a stabilizing control law for the system
with Lyapunov function V1. Consider now the first 2 subsystems:

ẋ = f(x) + g(x)ξ1 (27)

ξ̇1 = ξ2 (28)

We can stabilize this second order system using backstepping. Using the
control law (21) and associated Lyapunov function V2:

ξ2 = φ(x, ξ1) = ∂φ(x)
∂x

[f(x) + g(x)ξ1]

−∂V1

∂x
g(x) − k[ξ1 − φ(x)] , k > 0

V2 = V1 + 1
2 [ξ1 − φ(x)]2

We now iterate view the third-order system as a more general version of
(7)–(8) with

x =

[

x

ξ1

]

, ξ = ξ2, f =

[

f(x) + g(x)ξ1

0

]

, g =

[

0
1

]

Applying the backstepping algorithm once again, we obtain:

u =
∂φ(x)

∂x
ẋ −

∂V2

∂x
g(x) − k[ξ2 − φ(x)], k > 0

=

[

∂φ(x, ξ1)

∂x
,
∂φ(x, ξ1)

∂ξ1

]

[ẋ, ξ̇1]
T −

[

∂V2

∂x
,
∂V2

∂ξ1

]

[0 , 1]T +

−k[ξ2 − φ(x, ξ1)], k > 0
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or

u =
∂φ(x, ξ1)

∂x
[f(x) + g(x)ξ1] +

∂φ(x, ξ1)

∂ξ1
ξ2 −

∂V2

∂ξ1
+

−k[ξ2 − φ(x, ξ1)], k > 0.

The composite Lyapunov function is

V = V2 +
1

2
[ξ2 − φ(x, ξ1)]

2

= V1 +
1

2
[ξ1 − φ(x)]2 +

1

2
[ξ2 − φ(x, ξ1)]

2.
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Example 5 :

ẋ1 = ax2
1 − x3

1 + x2

ẋ2 = u

Substitute x2 = x2d + η2 to the system equation, get

ẋ1 = ax2
1 − x3

1 + x2d + η2

η̇2 = −ẋ2d + u

Design x2d as x2d = ax2
1 − x1, thus the first system equation can be written

as:

ẋ1 = −x1 − x3
1 + η2

Since x2d is designed as x2d = ax2
1 − x1, then

ẋ2d =
d

dt
(ax2

1 − x1)

= (2x1a + x1)ẋ1

= (2x1a + x1)(ax2
1 − x3

1 + x2)

use κ(x1, x2) to represent ẋ2d, then the second system equation can be writ-
ten as:

η̇2 = −κ(x1, x2) + u

Design u as

u = −κ(x1, x2) − η2 + uaux

The second equation of the system becomes:

η̇2 = −η2 + uaux

Now for the following system:

ẋ1 = −x1 − x3
1

η̇2 = −η2 + uaux
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Using the following Lyapunov function candidate: V = 1
2x

2
1 + 1

2η
2
2, we have:

V̇ = x1(−x1 − x3
1 + η2) + η2(−η2 + uaux)

V̇ ≤ −x2
1 + x1η2 − η2

2 + η2uaux

if we let uaux = −x1, we can have

V̇ ≤ −x2
1 − η2

2

Therefore the stabalizing control law can be:

u = −κ(x1, x2) − η2 + uaux

= −(2x1a + x1)(ax2
1 − x3

1 + x2) − (ẋ1 + x1 + x3
1) − x1

= (2a2 + a)x3
1 − (2a + 1)x4

1 + (2a + 1)x1x2

Example 6 : Consider the following system, :

ẋ1 = ax2
1 + x2

ẋ2 = x3

ẋ3 = u.

Step 1: Consider the first equation ẋ1 = ax2
1 + φ(x1). Using V1 = 1

2x
2
1, it is

immediate that φ(x1) = −x1 − ax2
1 stabilizes the origin.

Step 2: Consider the first two subsystems. We propose the stabilizing law
(with k > 0) and associated Lyapunov function:

φ(x1, x2)(= x3) =
∂φ(x1)

∂x1
[f(x1) + g(x1)x2] −

∂V1

∂x1
g(x1) − k[x2 − φ(x1)]

V2 = V1 +
1

2
z2 = V1 +

1

2
[x2 − φ(x1)]

= V1 +
1

2
[x2 + x1 + ax2

1]
2.

In our case, setting k = 1,

∂φ(x1)

∂x1
= −(1 + 2ax1)

∂V1

∂x1
= x1
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⇒ φ(x1, x2) = −(1 + 2ax1)[ax2
1 + x2] − x1 − [x2 + x1 + ax2

1]

Step 3: Consider the third order system with

x =

[

x1

x2

]

, ξ = x3, f =

[

f(x1) + g(x1)x2

0

]

, g =

[

0
1

]

From the results in the previous section we have that

u = ∂φ(x1,x2)
∂x1

[f(x1) + g(x1)x2]+
∂φ(x1,x2)

∂x2

x3 −
∂V2

∂x2

+

−k[x3 − φ(x1, x2)] , k > 0

is a stabilizing control law with associated Lyapunov function

V = V2 +
1

2
[x3 − φ(x1, x2]

2

2
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4 Strict Feedback Systems

Consider now “strict feedback systems” of the form

ẋ = f(x) + g(x)ξ1

ξ̇1 = f1(x, ξ1) + g1(x, ξ1)ξ2

ξ̇2 = f2(x, ξ1, ξ2) + g2(x, ξ1, ξ2)ξ3

...

ξ̇k−1 = fk−1(x, ξ1, ξ2, · · · , ξk−1) + gk−1(x, ξ1, ξ2, · · · , ξk−1)ξk

ξ̇k = fk(x, ξ1, ξ2, · · · , ξk) + gk(x, ξ1, ξ2, · · · , ξk)u

also called triangular systems. Considering first the special case:

ẋ = f(x) + g(x)ξ (29)

ξ̇ = fa(x, ξ) + ga(x, ξ)u. (30)

If ga(x, ξ) 6 =0 over the domain of interest, then we can define

u = φ(x, ξ) ,
1

ga(x, ξ)
[u1 − fa(x, ξ)]. (31)

Substituting (31) into (30) we obtain the modified system

ẋ = f(x) + g(x)ξ (32)

ξ̇ = u1 (33)

which is of the form (7)–(8). The stabilizing control law and associated
Lyapunov function are thus:

u = φ1(x, ξ) =
1

ga(x, ξ)

{

∂φ

∂x
[f(x) + g(x)ξ] (34)

−
∂V1

∂x
g(x) − k1[ξ − φ(x)] − fa(x, ξ)

}

, k1 > 0

V2 = V2(x, ξ) = V1(x) +
1

2
[ξ − φ(x)]2. (35)

Considering now the system

ẋ = f(x) + g(x)ξ1

ξ̇1 = f1(x, ξ1) + g1(x, ξ1)ξ2

ξ̇2 = f2(x, ξ1, ξ2) + g2(x, ξ1, ξ2)ξ3
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which can be seen as a special case of (29)–(30) with

x =

[

x

ξ1

]

, ξ = ξ2, u = ξ3, f =

[

f + g ξ1

f1

]

, g =

[

0
g1

]

,

fa = f2, ga = g2.

The stabilizing control law and associated Lyapunov function for this systems
are as follows:

φ2(x, ξ1, ξ2) =
1

g2

{

∂φ1

∂x
(f + gξ1) +

∂φ1

∂ξ1
(f1(x) + g1(x)ξ2)+

−
∂V2

∂ξ1
g1 − k2[ξ2 − φ1] − f2

}

, k2 > 0 (36)

V3(x, ξ1, ξ2) = V2(x) +
1

2
[ξ2 − φ1(x, ξ1)]

2. (37)
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Example 7 : Consider the following systems:

ẋ1 = ax2
1 − x1 + x2

1x2

ẋ2 = x1 + x2 + (1 + x2
2)u.

We begin by stabilizing the x subsystem. Using V1 = 1/2x2
1 we have that

V̇1 = x1[ax2
1 − x1 + x2

1x2]

= ax3
1 − x2

1 + x3
1x2.

Thus, x2 = φ(x1) = −(x1 + a) results in

V̇1 = −(x2
1 + x4

1)

which shows that the x1 system is asymptotically stable. It then follows by
(34)–(35) that a stabilizing control law for the second-order system and the
corresponding Lyapunov function are given by

u = φ1(x1, x2) =
1

(1 + x2
2)
{−(1 + a)[ax2

1 − x3
1 + x2

1x2] − x3
1 +

−k1[x2 + x1 + a] − (x1 + x2)} , k1 > 0

V2 =
1

2
x2

1 +
1

2
[x1 + x2 + a]2.

2
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