Chapter 5: Feedback Systems

Consider
T = f(x,u), f£(0,0) =0,
assume that u is obtained using state feedback:
u=¢(x).
The stability of the origin can be studied substituting (2) into (1):

1 Basic Feedback Stabilization
Example 1 . Consider the system
i =ax®+u where ‘a’is a non-zero constant
we look for a state feedback of the form
u=¢(z)
that makes x = 0 “asymptotically stable.” Consider first setting
u=—ar’—zx
Substituting (5) into (4) we obtain
T =—

which s linear and globally asymptotically stable, as desired.

Issues: this first solution has 2 problems

() It is based on the exact cancelation of the nonlinear term az?, thus re-

quiring the exact knowledge of the system parameter(s).

(i) Canceling “all” nonlinear terms simplifies the analysis but may not be a

good idea.



Example 2 . Consider the system given by

2

T = axr —x3+u

following the approach in Example 1 we can set

A
u = ulz—a:n2+:v3—x

which leads to
T = —x.

u; cancels the terms az? and —a3, which are quite different:
« The term in 22 is never desirable. It has a destabilizing effect.

o The term in —2? provides “damping” for x and can be beneficial.

3 3

« Cancellation of the term x° was achieved by incorporating the term x
in the feedback law. Leads to very large input values.

Alternate solution: Given the system

T = f(x,u) re R ue R, f(0,00=0

we proceed to find a feedback law u = ¢(x) such that

&= f(z,¢(x)) (6)

and x = 0 is asymptotically stable. We look for
Vi =Vi(z) : D — R satisfying

i) V1(0) = 0, and V;(z) is positive definite in D — {0}.
(i) There exist L(z): D — R™ (positive definite) such that
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- Ox

Example 3 : Consider again the system of example 2.

Vi(x) (z,6(z)) < —L(z) Vzé€D.

2

T = axr —x3+u

defining Vi(x) = %x2 and computing Vy, we obtain

3—x4+xu.

Vi = ax
In Example 2 we chose u = u; = —ax? + 23 — x. Thus
Vi = ar® — 2 + x(—ar® +2° — 1) = —2* & —L(2).
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We now modify L(x) as follows:
Vi=ar® —2'+2u < —L(z) & —(z* +27).

choose u as,

U = —x—am2.

With this u, we obtain the following feedback system

i = ar’ -2 +u
= —x—2°
which 1s globally asymptotically stable. O

2 Integrator Backstepping

We consider a system of the form

= flz)+g@)§, =reR.{eR (7)
§ = u (8)
We will make the following assumptions (see Figure 5.1(a)):

 f(0) = 0.
(i) Viewing the state variable £ as an independent “input”, we assume that
there exists a state feedback control law that stabilizes the origin of the
subsystem (7)
{=¢(x), ¢(0)=0
and a Lyapunov function V; : D — R* such that
_m
- Oz

where L(-) : D — R™ is a positive definite function in D.

Vi(z) [f(x) +g(x) - ¢(2)] < =L(x) <0 VreD

To stabilize now the system (7)—(8) we proceed as follows:

« Adding and subtracting g(x)¢(x) to (7) (Figure 1(b)) we obtain the
equivalent system

= f(2)+9(x)o(z) +9(2)[€ — o)) (9)
£ = u. (10)



e Define

= £- o) | (1)

= §—¢x) = u—oé(z) (12)
where

. 09, 0¢

b =20 = SLIf(@) + gl (13)

This change of variables can be seen as “backstepping” —¢(x) through
the integrator (Figure 1(c)). Defining

v=2 (14)
the resulting system is (Figure 1(d))

T o= f(x) +g(x)e(x) +g(x)z (15)
Z = (16)

V is defined as V = u — ¢(z) and ¢(z) calulated as (13)

Notice that (15)—(16) is equivalent to (7)—(8). To stabilize the system
(15)—(16) consider:

V=V(x,§&) =Vi(x) + %ZZ. (17)

=V = DAi1) + gla)ota) + gla)e] + 22

oV oV oV

%f (x)p(x) + =—g(x)z + 2v.

() + 559 o

We can choose V.
v=— (a—;g(:c) + kz) , k>0 (18)

Thus
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(19) implies that the origin z = 0,2z = 0 is asymptotically stable. Since
z =& — ¢(x) and ¢(0) = 0, the origin of the original system = =0, =0
is also asymptotically stable. The stabilizing state feedback law is given

u=7:+¢ (20)
w=L1fa) + o)) - Do) ke —o(x). ()



Example 4

Consider the following system:

T = ax? — 10 + a9

j?QIU.

Clearly this system is of the form (15)-(16) with

r = I

§ = m
flz) = fl1) = az] —
glz) =1

Step 1: Find & = ¢(x) to stabilize the origin x = 0. Defining

Vi(z1)

choosing

we obtain

1 2
2"

Vl(xl) = axz{’ — x‘ll +x1me < =V (1) £ —(xil + xf)

Step 2: To stabilize (22)- (23), we use of the control law (21):

211 (a) + g(a)e] — D Lgla) — Kl — o(a)

—(1 4 2azy)[az? — 23 + x9) — 21 — k[2g + 21 + ax?].

With this control law the origin s globally asymptotically stable. The com-
posite Lyapunov function is

1, 1, 1

V = Vi+ 522 =50t §[$2 — ¢(a1))?
1 1
= éx% + 5[:1:2 — 71 + axi)’.



3 Chain of Integrators

Consider now a system of the form

= f(z)+g(®)&

51 = &
ékﬂ = &
§p = u
For simplicity we focus on the third order system
b= flx)+g()e (24)
§1 = & (25)
§ = u (26)

To stabilize the origin we proceed as follows: we consider the first “subsys-
tem” (24). Assume that & = ¢(1) is a stabilizing control law for the system
with Lyapunov function Vj. Consider now the first 2 subsystems:

o= f(x)+g(x) (27)

& = & (28)
We can stabilize this second order system using backstepping. Using the
control law (21) and associated Lyapunov function V5:

& = o &) = Bf(2)+ ga)E)
—g(x) — k& — ¢(x)] ., k>0
Vs = Vi+3l& — o)
We now iterate view the third-order system as a more general version of
(7)—(8) with

:[] =6, f:{f<x>+g<x>§1]7 g:[()]

&1 0 1
Applying the backstepping algorithm once again, we obtain:
_ 9¢(x) . OV,
u = x—%g(a:)— k& — o(x)], k>0
0¢(x, &) 99(x,&)] (. . r  [0V2 OV) T
— | ==, = 1
[ 8.1,' ) 861 [xJ gl] ax Y 861 [O Y ] +

—k[€2—¢($,€1)], k>0
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or

_ 09(z,&) 0p(x,61), Vs

O Lf(z) + g(x)&:] + S

_k[€2 - Cb(xvgl)]? k > 0.

The composite Lyapunov function is

0&1 0&1

Vo= Vot 5l - ole, )P

= Vit 5la— ol + 56— oln. &P



Example 5

T = ax? — 1 + a9

j?g = U
Substitute xo = x9q + 1o to the system equation, get

. 2 3
1 = ar] — ]+ Tog+ M

7.]2 _:de + u

Design x4 as Xog = aa:% — a1, thus the first system equation can be written
as:

: 3
Ty = —r1 —X] + 19
Since xoq 15 designed as Trog = a:c% — x1, then
d
- 2
Tog = —t(a:lc1 — 1)

d
(2331& + ZE1)£i31
(

2110 + 1) (ax? — 23 + 1)

use k(x1,Ta) to represent Toq, then the second system equation can be writ-
ten as:

Ny = —k(x1, x2) + u
Design u as
u = —r(T1,T2) — Mo + Ugyz
The second equation of the system becomes:
Ny = =12 + Uquz

Now for the following system:

.fl = —.%’1—.%’?
772 — _772+uaux
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Using the following Lyapunov function candidate: V = %x% + %n%, we have:

Vo= ai(—z1 — 2} + n2) + (=12 + Uaus)
V S _-x% + X112 — 77% + o Uqua

of we let ugye = —x1, we can have
' 2 2
V< -1 —m

Therefore the stabalizing control law can be:

u = —k(T1,22) — N2 + Ugus
= —(2z1a + xl)(aa:% — xi’ + x9) — (21 + 21 + :r::l))) — T
= (2a® + a)2} — (2a + D] + (2a + 1)z129

Example 6 . Consider the following system, :

l"l = ax% + 9
.%-'2 = I3
.Ztg = u.

Step 1: Consider the first equation & = ax} + ¢(x1). Using Vi = 323, it is
immediate that ¢(z1) = —x1 — ax? stabilizes the origin.

Step 2: Consider the first two subsystems. We propose the stabilizing law
(with k > 0) and associated Lyapunov function:

0¢(x1) oVy

O(21, 32)(= x3) = 071 [f(@1) + g(@1)x2] — a—xlg(xl) — k[zs — ¢(z1)]
1, 1
Va = V1+§Z :V1+§[l‘2—¢($1)]

1

= i+ 5[@ +x1 + azi)’.

In our case, setting k =1,
0

)

oV

_:xl

(9:101
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= P(z1,12) = —(1 + 2a21)[ax? + 23] — 21 — [22 + 21 + ax?]
Step 3: Consider the third order system with

x:[ﬂ], =3 f= f($1)+09(931)x2]’ g:[(l)]

T2
From the results in the previous section we have that

W= a¢£1x2 [f (1) + gy )wo]+  2ziedy  OVa

0xo 0xo

—k[z3 — ¢(1, 29)] , k>0

1s a stabilizing control law with associated Lyapunov function

1
V=V, + 5[373 — (1, 29)?
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4 Strict Feedback Systems

Consider now “strict feedback systems” of the form

.x' = f(z)+g(x)&
gl fl(xagl) =+ gl(xvgl)gé
§& = fo@,&,8) + 922, &1, &)E3

i1 = fia(@, &6 6on) T o (2,6, 6, G)G
gk = fk(x7€17€27”'7€k)+gk(£7€17£27"'7€k)u

also called triangular systems. Considering first the special case:

o= flx) +g(2)¢ (29)
§ = Ja(@,8) + galz, §)u. (30)

If go(x,&) A0 over the domain of interest, then we can define

L1
u:¢(x7€) - ga(x,g)[ul_fa(xag)]' (31)
Substituting (31) into (30) we obtain the modified system

i = f@)+gla)e (32)
£ = w (33)

which is of the form (7)—(8). The stabilizing control law and associated
Lyapunov function are thus:

u = o€ = s { ) + ol (34
oVy

~tala) = bl ~ 9] - L) b b >0

Vo = Va(e, ) = Vle) + 56 — (o) (3)
Considering now the system
& = f@)+ ot
& = [l@&) + a7, 6)&
52 - f2($, 517 52) + 92(x7 517 52)53
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which can be seen as a special case of (29)—(30) with

I _ _ | ft9& 10
r = [61]75_527“_537]0_[ fl ]79_[.91]7

fa = f27 9o = Gg2-

The stabilizing control law and associated Lyapunov function for this systems
are as follows:

a6 = LS+ g6 + T ) + o))+
—?91—@[&—@51] —fQ}, ko >0 (36)
3

V(o) = Vale) + 516 — n (.60 (37)
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Example 7 : Consider the following systems:
T, = ax% — 1+ ZC%$2
iy = a1+ 29 + (14 23)u.
We begin by stabilizing the x subsystem. Using Vi = 1/22% we have that

vV, = :1:1[0,:1:% —x1 + x%xg]

= a:v? — x% + x?xg.

Thus, xo = ¢(x1) = —(x1 + a) results in
Vi =—(ai + 1)

which shows that the x1 system is asymptotically stable. It then follows by

(34)-(35) that a stabilizing control law for the second-order system and the
corresponding Lyapunov function are given by

1
u = Ty, %) = ———{—(1 4 a)[az? — 25 + 22xy] — 25 +
¢1(21, 22) (1+x%){( )aat — @y + x{we] — 2y
—ki[zo+x1+al — (x1+29)} , k1 >0
1 1
Vo = §x%+§[x1—|—a:2+a]2.
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