Chapter 6: Input–Output Stability

1 Function Spaces

In the following definition, we consider a function $u: \mathbb{R}^+ \to \mathbb{R}^q$, i.e., u is of the form:

$$u(t) = egin{bmatrix} u_1(t) \ u_2(t) \ \cdots \ u_q(t) \end{bmatrix}$$

Definition 1 : (The Space \mathcal{L}_2) The space \mathcal{L}_2 consists of all piecewise continuous functions $u: \mathbb{R}^+ \to \mathbb{R}^q$ satisfying

$$||u||_{\mathcal{L}_2} \triangleq \sqrt{\int_0^\infty [|u_1|^2 + |u_2|^2 + \dots + |u_q|^2] \, \mathrm{d}t} < \infty.$$
(1)

The norm $||u||_{\mathcal{L}_2}$ is the so-called \mathcal{L}_2 norm of the function u.

Definition 2 : (The Space \mathcal{L}_{∞}) The space \mathcal{L}_{∞} consists of all piecewise continuous functions $u: \mathbb{R}^+ \to \mathbb{R}^q$ satisfying

$$\|u\|_{\mathcal{L}_{\infty}} \triangleq \sup_{t \in R^+} \|u(t)\|_{\infty} < \infty.$$
⁽²⁾

 \mathcal{L}_2 and \mathcal{L}_∞ are examples of the so-called \mathcal{L}_p spaces: given $p: 1 \leq p < \infty$ the space \mathcal{L}_p consists of all piecewise continuous functions satisfying

$$\|u\|_{\mathcal{L}_p} \triangleq \left(\int_0^\infty [|u_1|^p + |u_2|^p + \dots + |u_q|^p] dt\right)^{1/p} < \infty.$$
(3)

1.1 Extended Spaces

Definition 3 : Let $u \in \mathcal{X}$. We define the truncation operator $P_T : \mathcal{X} \to \mathcal{X}$ by

$$(P_T u)(t) \equiv u_T(t) \triangleq \begin{cases} u(t), \ t \le T \\ 0, \ t > T \end{cases}$$

$$(4)$$

Example 1 : Consider the function $u : R^+ \to R^+$ defined by $u(t) = t^2$. The truncation of u(t) is the following function:

$$u_T(t) = \begin{cases} t^2, & 0 \le t \le T \\ 0, & t > T \end{cases}$$

Definition 4 : The extension of the space \mathcal{X} , denoted $\mathcal{X}e$ is defined as the space consisting of all functions whose truncation belongs to \mathcal{X}

Example 2: Let the space of functions $\mathcal{X} = \mathcal{L}_{\infty}$ and Consider the function x(t) = t. Thus $x_T \in \mathcal{X}e \forall T \in R^+$. However $x \notin \mathcal{X}$ since $\lim_{T \to \infty} |x_T| = \infty$. \Box

2 Input–Output Stability

We start with a precise definition of the notion of system.

Definition 5 : A system, in input-output sense, is a mapping $H : \mathcal{X}e \to \mathcal{X}e$ that satisfies the so-called causality condition:

$$[Hu(\cdot)]_T = [Hu_T(\cdot)]_T \quad \forall u \in \mathcal{X}e \text{ and } \forall T \in R.$$
(5)

Condition (5) states that the past and present outputs do not depend on future inputs. To visualize, imagine the following experiments (Figures 1 and 2):

- (1) We apply u(t), we find y(t) = Hu(t), and from here $y_T(t) = [Hu(t)]_T$. Clearly $y_T = [Hu(t)]_T(t)$ is the left-hand side of (5). See Figure 2 (a)-(c).
- (2) We compute $\bar{u} = u_T(t)$ from the u(t) used above, and repeat the procedure used in the first experiment. Namely, we compute the output $\bar{y}(t) = H\bar{u}(t) = Hu_T(t)$ to the input $\bar{u}(t) = u_T(t)$. Finally compute $\bar{y}_T = [Hu_T(t)]_T$ from \bar{y} . This is the the right-hand side of equation (5). See Figure 2 (d)-(f).

Figure 1: Experiment 1: input u(t) applied to system H. Experiment 2: input $\bar{u}(t) = u_T(t)$ applied to system H.

We may now state the definition of input–output stability.

Definition 6 : A system $H : \mathcal{X}e \to \mathcal{X}e$ is input-output \mathcal{X} -stable if whenever the input belongs to the space \mathcal{X} , the output is once again in \mathcal{X} . In other words, H is \mathcal{X} -stable if Hx is in \mathcal{X} whenever u in \mathcal{X} .

Definition 7 : A system $H : \mathcal{X}e \to \mathcal{X}e$ is said to have a finite gain if there exists a constant $\gamma(H) < \infty$ called the gain of H, and a constant $\beta \in R^+$ such that

$$\|(Hu)_T\|_{\mathcal{X}} \le \gamma(H) \ \|u_T\|_{\mathcal{X}} + \beta.$$
(6)

If the system H satisfies the condition

Hu = 0 whenever u = 0

then the gain $\gamma(H)$ can be calculated as follows

$$\gamma(H) = \sup \frac{\|(Hu)_T\|_{\mathcal{X}}}{\|u_T\|_{\mathcal{X}}}$$
(7)

where the supremum is taken over all $u \in \mathcal{X}e$ and all T in R^+ for which $u_T \not\models 0$.

Example 3 : Let $\mathcal{X} = \mathcal{L}_{\infty}$, and consider the nonlinear operator $N(\cdot)$ defined by the graph in the plane shown in Figure (3), and notice that N(0) = 0. The gain $\gamma(H)$ is easily determined from the slope of the graph of N.

$$\gamma(H) = \sup \frac{\|(Hu)_T\|_{\mathcal{L}_{\infty}}}{\|u_T\|_{\mathcal{L}_{\infty}}} = 1.$$

 -	-	-	

Figure 2: Causal systems: (a) input u(t); (b) the response y(t) = Hu(t); (c) truncation of the response y(t). Notice that this figure corresponds to the left-hand side of equation (5); (d) truncation of the function u(t); (e) response of the system when the input is the truncated input $u_T(t)$; (f) truncation of the system response in part (e). Notice that this figure corresponds to the right-hand side of equation (5).

Figure 3: Static nonlinearity $N(\cdot)$.

Figure 4: The Feedback System S.

3 The Small Gain Theorem

Definition 8 : We will denote by feedback system to the interconnection of the subsystems H_1 and $H_2 : \mathcal{X}_e \to \mathcal{X}_e$ that satisfies the following assumptions:

- (i) $e_1, e_2, y_1, and y_2 \in \mathcal{X}_e$ for all pairs of inputs $u_1, u_2 \in \mathcal{X}_e$.
- (ii) The following equations are satisfied for all $u_1, u_2 \in \mathcal{X}_e$:

$$e_1 = u_1 - H_2 e_2 \tag{8}$$

$$e_2 = u_2 + H_1 e_1. (9)$$

It is immediate that equations (8) and (9) can be represented graphically as shown in Figure (4).

Theorem 1 : Consider the feedback interconnection of the systems H_1 and $H_2 : \mathcal{X}e \to \mathcal{X}e$. Then, if $\gamma(H_1)\gamma(H_2) < 1$, the feedback system is input-output-stable.

Proof: For simplicity we assume that $\beta = 0$. We must show that $u_1, u_2 \in \mathcal{X}$ imply that e_1, e_2, y_1 and y_2 are also in \mathcal{X} . Truncating (8) and (9), we have

$$e_{1T} = u_{1T} - (H_2 e_2)_T \tag{10}$$

$$e_{2T} = u_{2T} + (H_1 e_1)_T. (11)$$

Thus,

$$||e_{1T}|| \leq ||u_{1T}|| + ||(H_2 e_2)_T|| \leq ||u_{1T}|| + \gamma(H_2)||e_{2T}||$$
(12)

$$\|e_{2T}\| \leq \|u_{2T}\| + \|(H_1e_1)_T\| \leq \|u_{2T}\| + \gamma(H_1)\|e_{1T}\|.$$
(13)

Substituting (13) in (12) we obtain

$$\|e_{1T}\| \leq \|u_{1T}\| + \gamma(H_2)\{\|u_{2T}\| + \gamma(H_1)\|e_{1T}\|\}$$

$$\leq \|u_{1T}\| + \gamma(H_2)\|u_{2T}\| + \gamma(H_1)\gamma(H_2)\|e_{1T}\|$$

$$\Rightarrow [1 - \gamma(H_1)\gamma(H_2)]\|e_{1T}\| \leq \|u_{1T}\| + \gamma(H_2)\|u_{2T}\|$$
(14)

and since, by assumption, $\gamma(H_1)\gamma(H_2) < 1$,

$$||e_{1T}|| \le [1 - \gamma(H_1)\gamma(H_2)]^{-1} \{||u_{1T}|| + \gamma(H_2)||u_{2T}||\}.$$
 (15)

Similarly

$$||e_{2T}|| \le [1 - \gamma(H_1)\gamma(H_2)]^{-1} \{||u_{2T}|| + \gamma(H_1)||u_{1T}||\}.$$
 (16)

If, in addition, u_1 and u_2 are in \mathcal{X} we can take limits as $T \to \infty$:

$$\|e_1\| \leq [1 - \gamma(H_1)\gamma(H_2)]^{-1} \{\|u_1\| + \gamma(H_2)\|u_2\|\}$$
(17)

$$||e_2|| \leq [1 - \gamma(H_1)\gamma(H_2)]^{-1} \{||u_2|| + \gamma(H_1)||u_1||\}.$$
 (18)

It follows that e_1 and e_2 are also in \mathcal{X} . Finally,

$$||(H_i e_i)_T|| \leq \gamma(H_i) ||e_{iT}||, \quad i = 1, 2$$
 (19)

 $\Rightarrow y_i \in \mathcal{X}.$