
Chapter 6: Input—Output Stability

1 Function Spaces

In the following definition, we consider a function u : R+ → R
q, i.e., u is of

the form:

u(t) =






u1(t)
u2(t)
· · ·

uq(t)






Definition 1 : (The Space L2) The space L2 consists of all piecewise con-
tinuous functions u : R+ → R

q satisfying

‖u‖L2 �

√∫ ∞

0

[|u1|2 + |u2|2 + · · ·+ |uq|2] dt < ∞. (1)

The norm ‖u‖L2 is the so-called L2 norm of the function u.

Definition 2 : (The Space L∞) The space L∞ consists of all piecewise con-
tinuous functions u : R+ → R

q satisfying

‖u‖L∞ � sup
t∈R+

‖u(t)‖∞ <∞. (2)

L2 and L∞ are examples of the so-called Lp spaces: given p : 1 ≤ p <∞ the
space Lp consists of all piecewise continuous functions satisfying

‖u‖Lp �

(∫ ∞

0

[|u1|
p + |u2|

p + · · ·+ |uq|
p] dt

)1/p
< ∞. (3)
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1.1 Extended Spaces

Definition 3 : Let u ∈ X . We define the truncation operator PT : X → X
by

(PTu)(t) ≡ uT (t) �






u(t), t ≤ T
t, T ∈ R+

0, t > T

(4)

Example 1 : Consider the function u : R+ → R+ defined by u(t) = t2. The
truncation of u(t) is the following function:

uT (t) =

{
t2, 0 ≤ t ≤ T
0, t > T

�

Definition 4 : The extension of the space X , denoted X e is defined as the
space consisting of all functions whose truncation belongs to X

Example 2 : Let the space of functions X = L∞ and Consider the function
x(t) = t. Thus xT ∈ X e∀T ∈ R

+. However x � ∈X since lim
T→∞

|xT | =∞. �

2 Input—Output Stability

We start with a precise definition of the notion of system.

Definition 5 : A system, in input-output sense, is a mapping H : X e→ X e
that satisfies the so-called causality condition:

[Hu(·)]T = [HuT (·)]T ∀u ∈ X e and ∀T ∈ R. (5)

Condition (5) states that the past and present outputs do not depend on
future inputs. To visualize, imagine the following experiments (Figures 1 and
2):

(1) We apply u(t), we find y(t) = Hu(t), and from here yT (t) = [Hu(t)]T .
Clearly yT = [Hu(t)]T (t)is the left-hand side of (5). See Figure 2 (a)-(c).

(2) We compute ū = uT (t) from the u(t) used above, and repeat the pro-
cedure used in the first experiment. Namely, we compute the output
ȳ(t) = Hū(t) = HuT (t) to the input ū(t) = uT (t). Finally compute
ȳT = [HuT (t)]T from ȳ. This is the the right-hand side of equation (5).
See Figure 2 (d)-(f).
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�u(t) �y(t) = Hu(t)
H

�ū(t) = uT (t) �ȳ(t) = HuT (t)H

Figure 1: Experiment 1 : input u(t) applied to system H. Experiment 2 : input ū(t) = uT (t) applied to
system H.

We may now state the definition of input—output stability.

Definition 6 : A system H : X e→ X e is input-output X -stable if whenever
the input belongs to the space X , the output is once again in X . In other
words, H is X -stable if Hx is in X whenever u in X .

Definition 7 : A system H : X e→ X e is said to have a finite gain if there
exists a constant γ(H) < ∞ called the gain of H, and a constant β ∈ R+

such that
‖(Hu)T‖X ≤ γ(H) ‖uT‖X + β. (6)

If the system H satisfies the condition

Hu = 0 whenever u = 0

then the gain γ(H) can be calculated as follows

γ(H) = sup
‖(Hu)T‖X
‖uT‖X

(7)

where the supremum is taken over all u ∈ X e and all T in R+ for which
uT � =0.

Example 3 : Let X = L∞, and consider the nonlinear operator N(·) defined
by the graph in the plane shown in Figure (3), and notice that N(0) = 0. The
gain γ(H) is easily determined from the slope of the graph of N .

γ(H) = sup
‖(Hu)T‖L∞
‖uT‖L∞

= 1.

�
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Figure 2: Causal systems: (a) input u(t); (b) the response y(t) = Hu(t); (c) truncation of the response y(t).
Notice that this figure corresponds to the left-hand side of equation (5); (d) truncation of the function u(t);
(e) response of the system when the input is the truncated input uT (t); (f) truncation of the system response
in part (e). Notice that this figure corresponds to the right-hand side of equation (5).
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Figure 3: Static nonlinearity N(·).
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Figure 4: The Feedback System S.

3 The Small Gain Theorem

Definition 8 : We will denote by feedback system to the interconnection of
the subsystems H1 and H2 : Xe → Xe that satisfies the following assumptions:

(i) e1, e2, y1, and y2 ∈ Xe for all pairs of inputs u1, u2 ∈ Xe.

(ii) The following equations are satisfied for all u1, u2 ∈ Xe:

e1 = u1 −H2e2 (8)

e2 = u2 +H1e1. (9)

It is immediate that equations (8) and (9) can be represented graphically
as shown in Figure (4).
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Theorem 1 : Consider the feedback interconnection of the systems H1 and
H2 : X e → X e. Then, if γ(H1)γ(H2) < 1, the feedback system is input—
output—stable.

Proof : For simplicity we assume that β = 0. We must show that u1, u2 ∈ X
imply that e1, e2, y1 and y2 are also in X . Truncating (8) and (9), we have

e1T = u1T − (H2e2)T (10)

e2T = u2T + (H1e1)T . (11)

Thus,

‖e1T‖ ≤ ‖u1T‖+ ‖(H2e2)T‖ ≤ ‖u1T‖+ γ(H2)‖e2T‖ (12)

‖e2T‖ ≤ ‖u2T‖+ ‖(H1e1)T‖ ≤ ‖u2T‖+ γ(H1)‖e1T‖. (13)

Substituting (13) in (12) we obtain

‖e1T‖ ≤ ‖u1T‖+ γ(H2){‖u2T‖+ γ(H1)‖e1T‖}

≤ ‖u1T‖+ γ(H2)‖u2T‖+ γ(H1)γ(H2)‖e1T‖

⇒ [1− γ(H1)γ(H2)]‖e1T‖ ≤ ‖u1T‖+ γ(H2)‖u2T‖ (14)

and since, by assumption, γ(H1)γ(H2) < 1,

‖e1T‖ ≤ [1− γ(H1)γ(H2)]
−1{‖u1T‖+ γ(H2)‖u2T‖}. (15)

Similarly

‖e2T‖ ≤ [1− γ(H1)γ(H2)]
−1{‖u2T‖+ γ(H1)‖u1T‖}. (16)

If, in addition, u1 and u2 are in X we can take limits as T →∞:

‖e1‖ ≤ [1− γ(H1)γ(H2)]
−1{‖u1‖+ γ(H2)‖u2‖} (17)

‖e2‖ ≤ [1− γ(H1)γ(H2)]
−1{‖u2‖+ γ(H1)‖u1‖}. (18)

It follows that e1 and e2 are also in X . Finally,

‖(Hiei)T‖ ≤ γ(Hi)‖eiT‖, i = 1, 2 (19)

⇒ yi ∈ X . �
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