Chapter 6: Input—Output Stability

1 Function Spaces

In the following definition, we consider a function v : R™ — R, i.e., u is of
the form:
(1)
a(ty = | 420
ug(1)
Definition 1 : (The Space L5) The space Lo consists of all piecewise con-
tinuous functions u : R™ — RY satisfying

Iul,cf\//o [Jut]® + Jug + -+ + Jug?] dt < oo (1)

The norm ||u||z, is the so-called L9 norm of the function w.

Definition 2 : (The Space L) The space L, consists of all piecewise con-
tinuous functions u : Rt — RY satisfying
lulle., = sup [Ju(t)]lo < o0. (2)
teRt
Ly and L, are examples of the so-called £, spaces: given p: 1 < p < oo the

space L, consists of all piecewise continuous functions satisfying

1/p
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1.1 Extended Spaces

Definition 3 : Let u € X. We define the truncation operator Pr: X — X

by
u(t), t<T
(Pru)(t) = up(t) = t,T € R* (4)
0, t>T

Example 1 : Consider the function u : RY — R* defined by u(t) = t. The
truncation of u(t) is the following function:

2, 0<t<T
ur®) =9 o 47
O

Definition 4 : The extension of the space X, denoted Xe is defined as the
space consisting of all functions whose truncation belongs to X

Example 2 : Let the space of functions X = L, and Consider the function
x(t) =t. Thus xp € XeVT € RT. However x X since jlim lz7| =0c0. O

2 Input—Output Stability

We start with a precise definition of the notion of system.

Definition 5 : A system, in input-output sense, is a mapping H : Xe — Xe
that satisfies the so-called causality condition:

[Hu(")|r = [Hur(-)]r  Vu € Xeand VT € R. (5)

Condition (5) states that the past and present outputs do not depend on
future inputs. To visualize, imagine the following experiments (Figures 1 and
2):

(1) We apply u(t), we find y(t) = Hu(t), and from here yp(t) = [Hu(t)]|r.
Clearly yr = [Hu(t)]r(t)is the left-hand side of (5). See Figure 2 (a)-(c).

(2) We compute @ = up(t) from the u(t) used above, and repeat the pro-
cedure used in the first experiment. Namely, we compute the output
y(t) = Hu(t) = Hup(t) to the input @(t) = wup(t). Finally compute
yr = [Hup(t)]r from g. This is the the right-hand side of equation (5).
See Figure 2 (d)-(f).
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a(t) = ur(t) p §(t) = Huz(1

Figure 1: Experiment 1: input wu(t) applied to system H. FEzperiment 2: input @(t) = wr(t) applied to
system H.

We may now state the definition of input—output stability.

Definition 6 : A system H : Xe — Xe is input-output X -stable if whenever
the input belongs to the space X, the output is once again in X. In other
words, H is X-stable if Hx is in X whenever u in X.

Definition 7 : A system H : Xe — Xe is said to have a finite gain if there
exists a constant y(H) < oo called the gain of H, and a constant € RT
such that

[(Hu)rllx < ~v(H) |lur|x + 5. (6)
If the system H satisfies the condition
Hu=0 whenever u=20

then the gain v(H) can be calculated as follows

() = sup 10T @
[ur]|x

where the supremum is taken over all © € Xe and all T in R™ for which
urt /EO.

Example 3 : Let X = L., and consider the nonlinear operator N(-) defined
by the graph in the plane shown in Figure (3), and notice that N(0) = 0. The
gain v(H) is easily determined from the slope of the graph of N.
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Figure 2: Causal systems: (a) input u(t); (b) the response y(t) = Hu(t); (c) truncation of the response y(t).

(e) response of the system when the input is the truncated input wr(t); (f) truncation of the system response

(c
Notice that this figure corresponds to the left-hand side of equation (5); (d) truncation of the function wu(t);
)
in part (e). Notice that this figure corresponds to the right-hand side of equation (5).



Figure 3: Static nonlinearity N(-).
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Figure 4: The Feedback System S.

3 The Small Gain Theorem

Definition 8 : We will denote by feedback system to the interconnection of
the subsystems Hy and Hy : X, — X, that satisfies the following assumptions:

(1) e1, €2, Y1, and yo € X, for all pairs of inputs ui, us € X.

(ii) The following equations are satisfied for all ui, us € X,:
er = u; — Haeo (8)
es = ug+ Hies. (9)

It is immediate that equations (8) and (9) can be represented graphically
as shown in Figure (4).



Theorem 1 : Consider the feedback interconnection of the systems Hy and
Hy : Xe — Xe. Then, if y(H1)y(Hs2) < 1, the feedback system is input—

output—stable.

Proof: For simplicity we assume that 3 = 0. We must show that ui, us € X
imply that e, ey, y; and y, are also in X'. Truncating (8) and (9), we have

eir = uir — (Haea)r
eor = ugr + (Hiep)r.
Thus,
lewr|| < lwir|| + [[(Haeo)r|| < [|war|| +v(H2)lear||
lear|| < luar|| + [[(Hier)r|| < |luerll +v(Hy)|leir]].

Substituting (13) in (12) we obtain

(
lexr]] < flwar]] +~v(H2){[[uar|| +~(H1)ller]}
< Nl +~y(Ho)luar || + v (H)y(Hy)[lerr |

= [ =ry(H)y(H)]llerr|| < lluarll + v (Ha)|uar|
and since, by assumption, v(H;)v(Hsy) < 1,

lexrll < 1 —y(Hi)y(Hy)] Y llusr || + v(Ha) [|uar ||}
Similarly
learll < 11—y (Hy)y(H2)] {luar || + v(Hy) usr ||}

If, in addition, u; and us are in X we can take limits as T' — oc:

leall < [1—=~(H)y(H2)] | + 5 (H2) |uz] }
leall < [1 = y(Hu)y(Ho)] ™ H{lluall + v (Hy)lua [}

It follows that e; and es are also in X. Finally,
[(Hied)rl| < v(Hilewrll, i=1,2

= y; € X.
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