
Chapter 7: Input-to-State Stability

1 Motivation

Consider again the system
ẋ = f(x, u) (1)

Assuming that ẋ = f(x, 0) has a uniformly asymptotically stable equilibrium
point at the origin, we study what happens when u � =0.

Example 1 : Consider the following first-order nonlinear system:

ẋ = −x+ (x+ x3)u.

If u = 0, we obtain ẋ = −x, (asymptotically stable equilibrium point). When
u(t) = 1, however, we obtain ẋ = x3, which results in an unbounded trajectory
for any initial condition. �

⇒ Asymptotic stability of x = 0 does not say much about the forced
system.

2 Definitions

The notion of input-to-state stability (ISS) attepts to capture the notion of
“bounded input—bounded state”.

Definition 1 : The system (1) is said to be locally input-to-state-stable (ISS)
if there exist a KL function β, a class K function γ and constants k1, k2 ∈ R+

such that

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖uT (·)‖L∞), ∀t ≥ 0, 0 ≤ T ≤ t (2)

for all x0 ∈ D and u ∈ Du satisfying : ‖x0‖ < k1 and supt>0 ‖uT (t)‖ =
‖uT‖L∞ < k2, 0 ≤ T ≤ t. It is said to be input-to-state stable, or globally
ISS if D = Rn, Du = Rm and (2) is satisfied for any initial state and any
bounded input u.
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Implications (Assume that ẋ = f(x, u) is ISS)

• Unforced systems: consider ẋ = f(x, 0). The response of (1) with initial
state x0 satisfies

‖x(t)‖ ≤ β(‖x0‖, t) ∀t ≥ 0, ‖x0‖ < k1,

⇒ x = 0 is uniformly asymptotically stable.

• Interpretation: if ‖u‖∞ < δ, trajectories remain bounded by the ball of
radius β(‖x0‖, t) + γ(δ), i.e.,

‖x(t)‖ ≤ β(‖x0‖, t) + γ(δ).

As t increases, β(‖x0‖, t)→ 0 and trajectories approach the ball of radius
γ(δ), i.e.,

lim
t→∞

‖x(t)‖ = L

L ≤ γ(δ)

γ(·) is called the ultimate bound of the system (1).

• Alternative Definition: A variation of Definition 1 is to replace equation
(2) with the following equation:

‖x(t)‖ ≤ max{β(‖x0‖, t), γ(‖uT (·)‖L∞)}, ∀t ≥ 0, 0 ≤ T ≤ t. (3)

Definition 2 : A continuously differentiable function V : D → R is said to
be an ISS Local Lyapunov function on D for the system (1) if there exist class
K functions α1, α2, α3, and X such that:

α1(‖x‖) ≤ V (x(t)) ≤ α2(‖x‖) ∀x ∈ D, t > 0 (4)

∂V (x)

∂x
f(x, u) ≤ −α3(‖x‖) u ∈ Du : ‖x‖ ≥ X (‖u‖). (5)

V is said to be an ISS Global Lyapunov function if D = Rn, Du = R
m, and

α1, α2, α3 ∈ K∞.

Remarks: this means that V is an ISS Lyapunov function if

(a) It is positive definite in D.

(b) It is negative definite along the trajectories of (1) whenever the trajecto-
ries are outside of the ball defined by ‖x∗‖ = X (‖u‖).
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3 Input-to-State Stability (ISS) Theorems

Theorem 1 : (Local ISS Theorem) Consider the system (1) and let V : D→
R be an ISS Lyapunov function for this system. Then (1) is input-to-state-
stable according to Definition 1 with

γ = α−11 ◦ α2 ◦ X (6)

k1 = α−12 (α1(r)) (7)

k2 = X−1(min{k1,X (ru)}). (8)

i.e ‖x‖ < r, ‖u‖ < ru (9)

Theorem 2 : (Global ISS Theorem) If the preceeding conditions are satisfied
with D = Rn and Du = R

m, and if α1, α2, α3 ∈ K∞, then the system (1) is
globally input-to-state stable.
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Example 2 : Consider the following system:

ẋ = −ax3 + u a > 0.

We propose the ISS Lyapunov function candidate V (x) = 1

2
x2. This V is

positive definite and satisfies (4) with

α1(‖x‖) = α2(‖x‖) =
1

2
x2.

We have
V̇ = −x(ax3 − u). (10)

We need to find α3(·) and X (·) ∈ K such that V̇ (x) ≤ −α3(‖x‖), whenever
‖x‖ ≥ X (‖u‖). Let θ : 0 < θ < 1

V̇ = −ax4 + aθx4 − aθx4 + xu

= −a(1− θ)x4 − x(aθx3 − u)

≤ −a(1− θ)x4 = −α3(‖x‖)

provided that
x(aθx3 − u) > 0.

This will be the case, provided that

aθ|x|3 > |u|

or, equivalently

|x| >




|u|

aθ




1/3

χ(‖u‖) =




|u|

aθ




1/3

It follows that the system is globally input-to-state-stable with γ(u) =
(
|u|
aθ

)1/3
.

�
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Example 3 : Now consider the following system, which is a slightly modified
version of the one in Example 2:

ẋ = −ax3 + x2u a > 0

Using the same ISS Lyapunov function candidate used in Example 2, we have
that

V̇ = −ax4 + x3u

= −ax4 + aθx4 − aθx4 + x3u 0 < θ < 1

= −a(1− θ)x4 − x3(aθx− u)

≤ −a(1− θ)x4, provided

x3(aθx− u) > 0 or,

|x| >
|u|

aθ
.

Thus, the system is globally input-to-state stable with γ(u) = |u|
aθ .

�
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4 Input-to-State Stability Revisited

Theorem 3 : A continuous function V : D → R is an ISS Lyapunov func-
tion on D for the system (1) if and only if there exist class K functions
α1, α2, α3, and σ such that the following two conditions are satisfied:

α1(‖x‖) ≤ V (x(t)) ≤ α2(‖x‖) ∀x ∈ D, t > 0 (11)

∂V (x)

∂x
f(x, u) ≤ −α3(‖x‖) + σ(‖u‖) ∀x ∈ D,u ∈ Du (12)

V is an ISS Global Lyapunov function if D = Rn, Du = Rm, and α1, α2, α3,
and σ ∈ K∞.

Remarks: Notice that, given ru > 0, there exist points x ∈ Rn such that

α3(‖x‖) = σ(ru).

This implies that ∃d ∈ R+ such that

α3(d) = σ(ru), or

d = α−1(σ(ru)).

Denoting Bd = {x ∈ Rn : ‖x‖ ≤ d}, we have that for any ‖x‖ > d and any
u : ‖u‖L∞ < ru:

∂V

∂x
f(x, u) ≤ −α(‖x‖) + σ(‖u‖) ≤ −α(‖d‖) + σ(‖u‖L∞).

Thus, the trajectory x(t) resulting from an input u(t) : ‖u‖L∞ < ru will
eventually enter the region

Ωd = max
‖x‖≤d

V (x).

Once inside this region, it is trapped inside Ωd, because of the condition on
V̇ .
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u � Σ2
z � Σ1 �x

Figure 1: Cascade connection of ISS systems.

5 Cascade-Connected Systems

Throughout this section we consider the composite system shown in Figure
1, where Σ1 and Σ2 are given by

Σ1 : ẋ = f(x, z) (13)

Σ2 : ż = g(z, u) (14)

where Σ2 is the system with input u and state z. The state of Σ2 serves as
input to the system Σ1.

Theorem 4 : Consider the cascade interconnection of the systems Σ1 and
Σ2. If both systems are input-to-state-stable, then the composite system Σ

Σ : u→



 x

z





is input-to-state-stable.
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