Chapter 8: Passivity

1 Power and Energy: Passive Systems

Notation:

$$p(\cdot)$$
 : power $w(\cdot)$: energy $w(t) = \int_{t_0}^t p(t) dt$.

In particular, in electric circuits, from where we will draw our inspiration, we have:

$$p(t) = v(t)i(t)$$

with the following convention:

- (i) If w(t) > 0, the box absorbs energy (example, resistence).
- (ii) If w(t) < 0, the box delivers energy (example, a battery, with negative voltage with respect to the polarity indicated in Figure 8.1).

In circuit theory, elements that do not generate their own energy are called *passive*, i.e., a circuit element is passive if

$$\int_{-\infty}^{t} v(t)i(t) dt \ge 0. \tag{1}$$

Example 1 : (Resistance)

$$v(t) = V,$$

$$i(t) = \frac{V}{R}$$

$$p(t) = \frac{V^2}{R} > 0$$

Thus a resistance "absorbs" energy at a rate V^2/R and is a passive element. Passive elements have some important properties.

- passivity has important implication on stability, as we will see.
- passivity is a *generic property* of a class of systems, and does not depend on the particular value of the system elements (this is useful).

<u>Problem</u>: we need to generalize the passivity concepts to systems other than electric circuits.

2 Definitions

Definition 1: A real inner product space \mathcal{X} , is a real linear space with a function $\langle x, y \rangle$ on $\mathcal{X} \times \mathcal{X} \to R$ that satisfies:

(i) $\langle x, y \rangle = \langle y, x \rangle$.

(ii)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y + z \rangle \quad \forall x, y, z \in \mathcal{X}.$$

(iii)
$$\langle \alpha x, y \rangle = \alpha \langle y, x \rangle \quad \forall x, y \in \mathcal{X}, \forall \alpha \in R.$$

(iv)
$$\langle x, x \rangle \ge 0$$
.

(v)
$$\langle x, x \rangle = 0$$
 if and only if $x = 0$.

Example 2 : (Dot product in \mathbb{R}^n)

$$x \cdot y = x^T y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Properties

- $\bullet \|x\|_{\mathcal{X}}^2 = \langle x, x \rangle.$
- Schwarz inequality:

$$|\langle x, y \rangle| \le ||x||_{\mathcal{X}} ||y||_{\mathcal{X}} \quad \forall x, y \in \mathcal{X}. \tag{2}$$

Example 3: (the most important for our purposes)

$$\langle x, y \rangle = \int_0^\infty x(t) \cdot y(t) dt$$
 (3)

with this inner product, we have that $\mathcal{X} = \mathcal{L}_2$, and moreover

$$||x||_{\mathcal{L}_2}^2 = \langle x, x \rangle = \int_0^\infty ||x(t)||_2^2 dt.$$
 (4)

Notation:

$$\langle x_T, y \rangle = \langle x, y_T \rangle = \langle x_T, y_T \rangle \stackrel{def}{=} \langle x, y \rangle_T.$$
 (5)

Definition 2: (Passivity) A system $H: \mathcal{X}_e \to \mathcal{X}_e$ is said to be passive if

$$\langle u, Hu \rangle_T \ge \beta \qquad \forall u \in \mathcal{X}_e, \ \forall T \in \mathbb{R}^+.$$
 (6)

Definition 3: (Strict Passivity) A system $H: \mathcal{X}_e \to \mathcal{X}_e$ is said to be strictly passive if there exists $\delta > 0$ such that

$$\langle u, Hu \rangle_T \geq \delta \|u_T\|_{\mathcal{X}}^2 + \beta \quad \forall u \in \mathcal{X}_e, \ \forall T \in \mathbb{R}^+.$$
 (7)
 $\beta \text{ is some constant}$

3 Interconnections of Passivity Systems

Theorem 1: Consider systems $H_i: \mathcal{X}e \to \mathcal{X}e, i = 1, \dots, n$. We have

- (i) If all of the $H_i's$, $i = 1, \dots, n$ are passive, then the system $H = H_1 + \dots + H_n$ is passive.
- (ii) If all the systems H_i , $i = 1, \dots, n$ are passive, and at least one of them is strictly passive, then the system H is strictly passive.
- (iii) (feedback systems) If the systems H_i , i = 1, 2 are passive then, the mapping from u into y defined by equations (8)–(9) below, is passive.

$$e = u - H_2 y \tag{8}$$

$$y = H_1 e \tag{9}$$

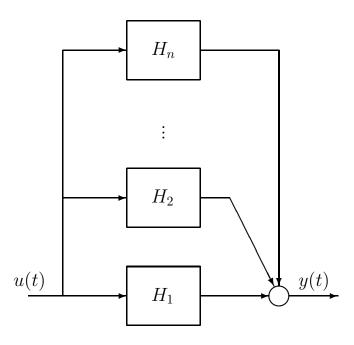


Figure 1: $H = H_1 + H_2 + \cdots + H_n$.

Proof of Theorem 1

Proof of (i): We have

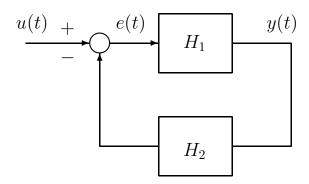


Figure 2: The Feedback System S_1 .

$$\langle x, (H_1 + \dots + H_n)x \rangle_T = \langle x, H_1 x + \dots + H_n x \rangle_T$$

$$= \langle x, H_1 x \rangle_T + \dots + \langle x, H_n x \rangle_T$$

$$\geq \beta_1 + \dots + \beta_n \triangleq \beta.$$

Thus, $H \triangleq (H_1 + \cdots + H_n)$ is passive.

Proof of (ii) Assume that k out of the n systems H_i are strictly passive, $1 \le k \le n$. We can assume that these are the systems H_1, H_2, \dots, H_k . It follows that

$$\langle x, Hx \rangle_T = \langle x, H_1 x + \dots + H_n x \rangle_T$$

$$= \langle x, H_1 x \rangle_T + \dots + \langle x, H_k x \rangle_T + \dots + \langle x, H_n x \rangle_T$$

$$\geq \delta_1 \langle x, x \rangle_T + \dots + \delta_k \langle x, x \rangle_T + \beta_1 + \dots + \beta_n$$

$$= (\delta_1 + \dots + \delta_k) \|x_T\|_{\mathcal{X}} + (\beta_1 + \dots + \beta_n)$$

and the result follows.

Proof of (iii): Consider the following inner product:

$$\langle u, y \rangle_T = \langle e + H_2 y, y \rangle_T$$

= $\langle e, y \rangle_T + \langle H_2 y, y \rangle_T$
= $\langle e, H_1 e \rangle_T + \langle y, H_2 y \rangle_T \ge (\beta_1 + \beta_2).$

3.1 Passivity and Small Gain

In the following theorem \mathcal{X}_e is an inner product space, and the gain of a system $H: \mathcal{X}e \to \mathcal{X}e$ is the gain induced by the norm $||x||^2 = \langle x, x \rangle$.

Theorem 2: Let $H: \mathcal{X}e \to \mathcal{X}e$, and define the function $S: \mathcal{X}e \to \mathcal{X}e$:

$$S = (H - I)(I + H)^{-1}. (10)$$

We have:

(a) H is passive if and only if the gain of S is at most 1, that is, S is such that

$$||(Sx)_T||_{\mathcal{X}} \le ||x_T||_{\mathcal{X}} \quad \forall x \in \mathcal{X}e, \forall T \in \mathcal{X}_e.$$
(11)

(b) H is strictly passive and has finite gain if and only if the gain of S is less than 1.

4 Stability of Feedback Interconnections

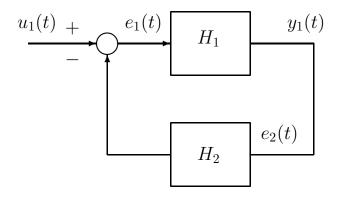


Figure 3: The Feedback System S_1 .

Theorem 3: Let $H_1, H_2 : \mathcal{X}_e \to \mathcal{X}_e$ and consider the feedback interconnection defined by the following equations:

$$e_1 = u_1 - H_2 e_2 (12)$$

$$y_1 = H_1 e_1.$$
 (13)

Under these conditions, if H_1 is passive and H_2 is strictly passive, then $y_1 \in \mathcal{X}$ for every $u_1 \in \mathcal{X}$.

Proof: We have

$$\langle u_1, y_1 \rangle_T = \langle u_1, H_1 e_1 \rangle_T$$

$$= \langle e_1 + H_2 e_2, H_1 e_1 \rangle_T$$

$$= \langle e_1, H_1 e_1 \rangle_T + \langle H_2 e_2, H_1 e_1 \rangle_T$$

$$= \langle e_1, H_1 e_1 \rangle_T + \langle H_2 y_1, y_1 \rangle_T$$

but

$$\langle e_1, H_1 e_1 \rangle_T \geq 0$$

 $\langle H_2 y_1, y_1 \rangle_T \geq \delta \|y_{1T}\|_{\mathcal{X}}^2$

since H_1 and H_2 are passive and strictly passive, respectively. Thus

$$\langle u_1, y_1 \rangle_T \ge \delta \|y_{1T}\|_{\mathcal{X}}^2$$

By the Schwarz inequality, $|\langle u_1, y_1 \rangle_T| \leq ||u_{1T}||_{\mathcal{X}} ||y_{1T}||_{\mathcal{X}}$. Hence

$$||u_{1T}||_{\mathcal{X}} ||y_{1T}||_{\mathcal{X}} \ge \delta ||y_{1T}||_{\mathcal{X}}^{2}$$

$$\Rightarrow ||y_{1T}||_{\mathcal{X}} \le \delta^{-1} ||u_{1T}||_{\mathcal{X}}$$
(14)

Therefore, if $u_1 \in \mathcal{X}$, we can take limits as T tends to infinity on both sides of inequality (14) to obtain

$$||y_1|| \ge \delta^{-1}||u_1||$$

which shows that if u_1 is in \mathcal{X} , then y_1 is also in \mathcal{X} .

Remarks: As stated, this theorem does not guarantee that the error e_1 and the output y_2 are bounded.

Theorem 4: If both systems are passive and one of them is (i) strictly passive and (ii) has finite gain, then e_1 , e_2 , y_1 , and y_2 are in \mathcal{X} whenever $x \in \mathcal{X}$.

Proof: Very similar.

5 Passivity of Linear Time-Invariant Systems

Theorem 5: Consider a linear time-invariant system $H: \mathcal{L}_{2e} \to \mathcal{L}_{2e}$ with transfer function H(s) = n(s)/d(s), and assume that the roots of d(s) lie in the left half of the complex plane. We have

- (i) H is passive if and only if $\Re e[\widehat{H}(\jmath\omega)] \geq 0 \quad \forall \omega \in \mathbb{R}$.
- (ii) H is strictly passive if and only if $\exists \delta > 0$ such that $\Re e[\widehat{H}(\jmath\omega)] \geq \delta \quad \forall \omega \in R$.

<u>Remarks</u> Notice that Theorem 5 applies to systems with no poles on the imaginary axis.

Example 4: Consider the system $H: \mathcal{L}_{2e} \to \mathcal{L}_{2e}$ defined by its transfer function

$$\widehat{H}(s) = \frac{\alpha s}{s^2 + \omega_0^2} \quad \alpha > 0, \ \omega_0 \ge 0.$$

Under these conditions, H is passive.

By Theorem 2, H is passive if and only if

$$\|\widehat{S}\|_{\infty} = \left\| \frac{1 - H}{1 + H} \right\|_{\infty} \le 1$$

but for the given $\widehat{H}(s)$

$$\widehat{S}(s) = \frac{s^2 - \alpha s + \omega_0^2}{s^2 + \alpha s + \omega_0^2}$$

$$\Rightarrow \widehat{S}(\jmath\omega) = \frac{(\omega_0^2 - \omega^2) - \jmath\alpha\omega}{(\omega_0^2 - \omega^2) + \jmath\alpha\omega}$$

which has the form $(a - \jmath b)/(a + \jmath b)$. Thus $|\widehat{S}(\jmath \omega)| = 1 \quad \forall \omega$, which implies that $\|\widehat{S}\|_{\infty} = 1$, and the theorem is proved.

Remarks: Systems with a transfer function of this form are oscillatory. In particular, a linear time-invariant model of a flexible structure has the following form:

$$\widehat{H}(s) = \sum_{i=1}^{\infty} \frac{\alpha_i s}{s^2 + \omega_i^2}.$$
(15)

Examples of flexible structures include flexible manipulators and space structures. It follows from Theorem 1 that, working in the space \mathcal{L}_2 , a system with transfer function as in (15) is passive.